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Abstract
We consider a trader who aims to liquidate a large position in the presence of an

arbitrageur who hopes to profit from the trader’s activity. The arbitrageur is uncer-
tain about the trader’s position and learns from observed price fluctuations. This is
a dynamic game with asymmetric information. We present an algorithm for comput-
ing perfect Bayesian equilibrium behavior and conduct numerical experiments. Our
results demonstrate that the trader’s strategy differs significantly from one that would
be optimal in the absence of the arbitrageur. In particular, the trader must balance
the conflicting desires of minimizing price impact and minimizing information that is
signaled through trading. Accounting for information signaling and the presence of
strategic adversaries can greatly reduce execution costs.

1 Introduction

When buying or selling securities, value is lost through execution costs such as exchange fees,

commissions, bid-ask spreads, and price impact. The latter can be dramatic and typically

dominates other sources of execution cost when trading large blocks, when the security

is thinly traded, or when there is an urgent demand for liquidity. Execution algorithms

aim to reduce price impact by partitioning the quantity to be traded and placing trades

sequentially. Growing recognition for the importance of execution has fueled an academic

literature on the topic as well as the formation of specialized groups at investment banks

and other organizations to offer execution services.

Optimal execution algorithms have been developed for a number of models. In the

base model of Bertsimas and Lo [1], a stock price nominally follows a discrete-time random

walk and the market impact of a trade is permanent and linear in trade size. The authors

establish that expected cost is minimized by an equipartitioning policy. This policy trades
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equal amounts over the time increments within the trading horizon. Further developments

have led to optimal execution algorithms for models that incorporate price predictions [1],

bid-ask spreads and resilience [2, 3], nonlinear price impact models [4, 5], and risk aversion

[6, 7, 8, 9, 10].

The aforementioned results offer insight into how one should partition a block and se-

quence trades under various assumptions about market dynamics and objectives. The re-

sulting algorithms, however, are unrealistic in that they exhibit predictable behavior. Such

predictable behavior allows strategic adversaries, which we call arbitrageurs, to “front-run”

trades and profit at the expense of increased execution cost. For example, consider liqui-

dating a large block by an equipartitioning policy which sells an equal amount during each

minute of a trading day. Trades early in the day generate abnormal price movements, allow-

ing an observing arbitrageur to anticipate further liquidation. If the arbitrageur sells short

and closes his position at the end of the day, he profits from expected price decreases. The

arbitrageur’s actions amplify price impact and therefore increase execution costs.

Several recent papers study game-theoretic models of execution in the presence of strate-

gic arbitrageurs [11, 12, 13]. However, these models involve games with symmetric informa-

tion, in which arbitrageurs know the position to be liquidated. In more realistic scenarios,

this information would be the private knowledge of the trader, and the arbitrageurs would

make inferences as to the trader’s position based on observed market activity.

This type of information asymmetry is central to effective execution. The fact that his

position is unknown to others allows the trader to greatly reduce execution costs. But to do

so requires deliberate management of the signals he transmits by influencing prices. Further,

the desire to minimize information signaling may be at odds with the desire to minimize price

impact. A model through which such signaling can be studied must account for uncertainty

among arbitrageurs and their ability to learn from observed price fluctuations. In this paper

we formulate and study a simple model which we believe to be the first that meets this

requirement.

The contributions of this paper are as follows:

1. We formulate the optimal execution problem as a dynamic game with asymmetric
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information. This game involves a trader and a single arbitrageur. Both agents are

risk neutral, and market dynamics evolve according to a linear price impact model

of Bertsimas and Lo [1]. The trader seeks to liquidate his position in a finite time

horizon. The arbitrageur attempts to infer the position of the trader by observing

market price movements, and seeks to exploit this information for profit.

2. We develop an algorithm that computes perfect Bayesian equilibrium behavior.

3. We demonstrate that the associated equilibrium strategies take on a surprisingly simple

structure:

(a) Trades placed by the trader are linear in the arbitrageur’s estimation error and

the arbitrageur’s expectation of the combined position of the trader and the

arbitrageur.

(b) Trades placed by the arbitrageur are linear in the arbitrageur’s expectation of

the combined position of the trader and the arbitrageur.

(c) The equilibrium policies are a function of the time horizon and a single parameter

that we call the “relative volume”. This parameter captures the magnitude of the

per period activity of the trader relative to the exogenous fluctuations of the

market.

4. We present computational results that make several points about perfect Bayesian

equilibrium in our model:

(a) In the presence of adversaries, there are significant potential benefits to employing

perfect Bayesian equilibrium strategies.

(b) Unlike strategies proposed based on prior models in the literature, which exhibit

deterministic sequences of trades, trades in perfect Bayesian equilibrium respond

to price fluctuations; the trader leverages these random outcomes to shade his

activity.

(c) When the relative volume of the trader’s activity is low, in equilibrium, the trader

can ignore the presence of the arbitrageur and will equipartition to minimize price
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impact. Alternatively, when the relative volume is high, the trader will concen-

trate his trading activity in a short time interval so as to minimize signaling.

(d) The presence of the arbitrageur leads to a market surplus. That is, the trader’s

expected loss due to the arbitrageur’s presence is larger than the expected profit of

the arbitrageur. Hence, other market participants benefit from the arbitrageur’s

activity.

Beyond the immediate application to the optimal execution problem, the results in this

paper also represent a contribution to the general theory of games with asymmetric in-

formation. Equilibrium in such games is notoriously difficult to compute. Typical games

that have been considered are basic signaling games (see [14, Chapter 8] and the references

therein), where the game has two periods and the private information takes the form of a

binary-valued “type”. In contrast, the game considered here has an arbitrary discrete time

horizon, and the private information (the position of the trader) is a continuous value.

The remainder of this paper is organized as follows. The next section presents our

problem formulation. Section 3 discusses how perfect Bayesian equilibrium in this model is

characterized by a dynamic program. A practical algorithm for computing perfect Bayesian

equilibrium behavior is developed in Section 4. This algorithm is applied in computational

studies, for which results are presented and interpreted in Section 5. Finally, Section 6 makes

some closing remarks and suggests directions for future work. Proofs of all theoretical results

are presented in the appendix.

2 Problem Formulation

We consider a game that evolves over a finite horizon in discrete time steps t = 0, . . . , T .

There are two players: a trader and an arbitrageur. The trader begins with a position

x0 ∈ R in a stock, which he must liquidate by time T . We denote his position at each time

t by xt. The trader requires that his final position xT be zero. The arbitrageur begins with

a position y0. We denote his position at each time t by yt. He requires that yT be zero.
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The price of the stock evolves according to

pt = pt−1 + λ(ut + vt) + εt

= pt−1 + ∆pt.

where ut is the quantity purchased by the trader and vt is the quantity purchased by the

arbitrageur. The sequence {εt} is IID with εt ∼ N(0, σ2
ε ), for some σε > 0. This noise

sequence represents the random and exogenous fluctuations of market prices. We assume

that the trading decisions ut and vt are made at time t− 1, and executed at the price pt at

time t. The positions evolve according to

xt = xt−1 + ut, and yt = yt−1 + vt.

The information structure of the game is as follows. The dynamics of the game (in

particular, the parameters λ and σε) and the common time horizon T are mutually known.

From the perspective of the arbitrageur, the initial position x0 of the trader is unknown.

Further, the trader’s actions ut are not directly observed. However, the arbitrageur begins

with a prior distribution φ0 on the trader’s initial position x0. As the game evolves over

time, the arbitrageur observes the price changes ∆pt. The arbitrageur updates his beliefs

based on these price movements, at any time t maintaining a posterior distribution φt of the

trader’s current position xt, based on his observation of the history of the game up to and

including time t.

From the trader’s perspective, we assume that everything is known. This is motivated

by the fact that the arbitrageur’s initial position y0 will typically be zero and the trader can

go through the same inference process as the arbitrageur to arrive at the prior distribution

φ0. Given a prescribed policy of the form described below for the arbitrageur (for exam-

ple, in equilibrium), the trader can subsequently reconstruct the arbitrageur’s positions and

beliefs over time, given the public observations of market price movements. We do make

the assumption, however, that any deviations on the part of the arbitrageur from his pre-

scribed policy will not mislead the trader. In our context, this assumption is important for
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tractability. We discuss the situation where this assumption is relaxed, and the trader does

not have perfect knowledge of the arbitrageur’s positions and beliefs, in Section 6.

The trader’s purchases are governed by a policy, which is a sequence of functions π =

{π1, . . . , πT }. Each function πt+1 maps xt, yt, and φt, to a decision ut+1 at time t. We

consider only trader policies for which πT (xT−1, yT−1, φT−1) = −xT−1; i.e., policies that

result in liquidation. We denote the set of trader policies by Π. Similarly, the arbitrageur

follows a policy ψ = {ψ1, . . . , ψT }. Each function ψt+1 maps yt and φt to a decision vt+1

made at time t. We restrict attention to arbitrageur policies for which ψT (yT−1, φT−1) =

−yT−1. We denote the set of arbitrageur policies by Ψ.

Note that we are restricting ourselves to policies that are Markovian in the sense that

the state of the game at time t is summarized for the trader and arbitrageur by the tuples

(xt, yt, φt) and (yt, φt), respectively, and that each player’s action is only a function of his

state. Further, we are assuming that the policies are pure strategies in the sense that, as a

function of the player’s state, the actions are deterministic. In general, one may wish to con-

sider policies which determine actions as a function of the entire history of the game up to a

given time, and allow randomization over the choice of action. Our assumptions will exclude

equilibria from this more general class. However, it will be the case that for the equilibria

that we do find, arbitrary deviations that are history dependent and/or randomized will not

be profitable.

If the arbitrageur applies an action vt and assumes the trader uses a policy π̂ ∈ Π, then

upon observation of ∆pt at time t, the arbitrageur’s beliefs are updated in a Bayesian fashion

according to

φt(S) = P (xt ∈ S | φt−1, yt−1, λ(π̂t(xt−1, yt−1, φt−1) + vt) + εt = ∆pt) ,

for all measurable sets S ⊂ R. Note that ∆pt here is an observed numerical value which

could have resulted from a trader action ut 6= π̂t(xt−1, yt−1, φt−1). As such, the trader is

capable of misleading the arbitrageur to distort his posterior distribution φt.

We consider a profit to be a change of book value, which is the sum of a player’s cash
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position and asset position, valued at the prevailing market price. Hence, the profit generated

by the trader and arbitrageur through their trades ut+1 and vt+1 are

pt+1xt+1 − pt+1ut+1 − ptxt = ∆pt+1xt, and pt+1yt+1 − pt+1vt+1 − ptyt = ∆pt+1yt,

respectively. If the trader uses policy π and the arbitrageur uses policy ψ and assumes the

trader uses policy π̂, the trader expects profits

U
π,(ψ,π̂)
t (xt, yt, φt) ≡ Eπ,(ψ,π̂)

[
T−1∑
τ=t

∆pτ+1xτ

∣∣∣∣∣ xt, yt, φt
]
,

over times τ = t+ 1, . . . , T . Here, the subscripts indicate that trades are executed based on

π and ψ, while beliefs are updated based on π̂. Similarly,

V
(ψ,π̂),π
t (yt, φt) ≡ Eπ,(ψ,π̂)

[
T−1∑
τ=t

∆pτ+1yτ

∣∣∣∣∣ yt, φt
]
,

over times τ = t + 1, . . . , T . Here, the conditioning in the expectation implicitly assumes

that xt is distributed according to φt.

Note that −Uπ,(ψ,π)
t (x0, y0, φ0) is the trader’s expected execution cost. For practical

choices of π, ψ, and π̂, we expect this quantity to be positive since the trader is likely to sell

his shares for less than the initial price. To compress notation, for any π, ψ, and t, let

Uπ,ψt ≡ Uπ,(ψ,π)
t , and V ψ,π

t ≡ V (ψ,π),π
t .

As a solution concept, we consider perfect Bayesian equilibrium, which is a refinement

of Nash equilibrium that rules out implausible outcomes by requiring subgame perfection

and consistency with Bayesian belief updates. In particular, we will refer to π ∈ Π as a best

response to (ψ, π̂) ∈ Ψ×Π if

(2.1) U
π,(ψ,π̂)
t (xt, yt, φt) = max

π′∈Π
U
π′,(ψ,π̂)
t (xt, yt, φt),
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for all t, xt, yt, and φt. Further, we will refer to ψ ∈ Ψ as a best response to π ∈ Π if

(2.2) V ψ,π
t (yt, φt) = max

ψ′∈Ψ
V ψ′,π
t (yt, φt),

for all t, yt, and φt. We define perfect Bayesian equilibrium, specialized to our context, as

follows:

Definition 1. A perfect Bayesian equilibrium (PBE) is a pair of policies (π∗, ψ∗) ∈

Π×Ψ such that:

1. π∗ is a best response to (ψ∗, π∗);

2. ψ∗ is a best response to π∗.

In a PBE, each player’s action at time t depends on positions xt and/or yt and the

distribution φt. These arguments, especially the distribution, make computation and repre-

sentation of a PBE challenging. We will settle for a more modest goal. We compute PBE

actions only for cases where φt is Gaussian. When the initial distribution φ0 is Gaussian

and players employ these PBE policies, subsequent distributions φt are also Gaussian. As

such, computation of PBE policies over the restricted domain is sufficient to characterize

equilibrium behavior given any initial conditions involving a Gaussian prior. To formalize

our approach, we now define a solution concept.

Definition 2. A policy π ∈ Π (or ψ ∈ Ψ) is a Gaussian best response to (ψ, π̂) ∈ Ψ×Π

(or π ∈ Π) if (2.1) (or (2.2)) holds for all t, xt, yt, and Gaussian φt. A Gaussian perfect

Bayesian equilibrium is a pair (π∗, ψ∗) ∈ Π×Ψ of policies such that

1. π∗ is a Gaussian best response to (ψ∗, π∗);

2. ψ∗ is a Gaussian best response to π∗;

3. if φ0 is Gaussian and arbitrageur assumes the trader uses π∗ then, independent of the

true actions of the trader, φ1, . . . , φT−1 are Gaussian.
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Note that when Gaussian PBE policies are used and the prior φ0 is Gaussian, the system

behavior is indistinguishable from PBE since the policies produce actions that concur with

PBE policies at all states that are visited.

3 Dynamic Programming Analysis

In this section, we develop abstract dynamic programming algorithms for computing PBE

and Gaussian PBE. We also discuss structural properties of associated value functions.

The dynamic programming recursion relies on the computation of equilibria for single-stage

games, and we also discuss the existence of such equilibria. The algorithms of this section

are not implementable, but their treatment motivates the design of a practical algorithm

that will be presented in the next section.

3.1 Stage-Wise Decomposition

We will decompose the process of computing a PBE and corresponding value functions into

single-stage problems via a dynamic programming recursion. We begin by defining some

notation. For each πt, ψt, and ut, we define a dynamic programming operator F (ψt,π̂t)
ut by

(
F (ψt,π̂t)
ut U

)
(xt−1, yt−1, φt−1) ≡ E(ψt,π̂t)

ut [λ(ut + vt)xt−1 + U(xt, yt, φt) | xt−1, yt−1, φt−1] ,

for all U , where xt = xt−1 + ut, yt = yt−1 + vt, vt = ψt(yt−1, φt−1), and φt results from

Bayesian updating given that the arbitrageur assumes the trader trades π̂t(xt−1, yt−1, φt−1)

while the trader actually trades ut. In addition, for each πt and vt, we define a dynamic

programming operator Gπtvt by

(
GπtvtV

)
(yt−1, φt−1) ≡ Eπtvt [λ(ut + vt)yt−1 + V (yt, φt) | yt−1, φt−1] ,

for all V , where yt = yt−1 + vt, ut = πt(xt−1, yt−1, φt−1), xt−1 is distributed according to

the belief φt−1, and φt results from Bayesian updating given that the arbitrageur correctly

assumes the trader trades ut.
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Consider Algorithm 1. It is easy to see that, so long as Step 3 is carried out successfully

each time it is invoked, the algorithm produces a PBE (π∗, φ∗) along with value functions

U∗t = Uπ
∗,ψ∗

t and V ∗t = V ψ∗,π∗

t . However, the algorithm is not implementable. For starters,

the functions π∗t , ψ∗t , U∗t−1, and V ∗t−1, which must be computed and stored, have infinite

domains. This can not be done on a computer.

Algorithm 1 PBE Solver

1: Initialize the terminal value functions by setting, for all xT−1, yT−1, and φT−1,

U∗T−1(xT−1, yT−1, φT−1)← −λ(xT−1 + yT−1)xT−1

V ∗T−1(yT−1, φT−1)← −λ
(∫

xφT−1(dx) + yT−1

)
yT−1

2: for t = T − 1, T − 2, . . . , 1 do
3: Compute (π∗t , ψ

∗
t ) such that for all xt−1, yt−1, and φt−1,

π∗t (xt−1, yt−1, φt−1) ∈ argmax
ut

(
F

(ψ∗t ,π
∗
t )

ut U∗t

)
(xt−1, yt−1, φt−1)

ψ∗t (yt−1, φt−1) ∈ argmax
vt

(
G
π∗t
vt V

∗
t

)
(yt−1, φt−1)

4: Compute the value functions at the previous time step by setting, for all xt−1, yt−1,
and φt−1,

U∗t−1(xt−1, yt−1, φt−1)←
(
F

(ψ∗t ,π
∗
t )

π∗t
U∗t

)
(xt−1, yt−1, φt−1)

V ∗t−1(yt−1, φt−1)←
(
G
π∗t
ψ∗t
V ∗t

)
(yt−1, φt−1)

5: end for

3.2 Quasilinear Policies

Given a distribution φt, define

µt ≡
∫
xφt(dx), σ2

t ≡
∫

(x− µt)2φt(dx), and ρt ≡ λσt/σε.

Since λ and σε are constants, ρt is simply a scaled version of the standard deviation σt.

The ratio λ/σε acts as a normalizing constant that accounts for the informativeness of

observations. The reason we consider this scaling is that it highlights certain invariants
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across problem instances. In Section 5.2, we will interpret the value of ρ0 as the relative

volume of the trader’s activity in the marketplace.

We will consider restricting attention to a class of policies that are indexed by a few

parameters.

Definition 3. A function πt is quasilinear if there are coefficients aρt−1

x,t and aρt−1

y,t , which

are functions of ρt−1, such that

πt(xt−1, yt−1, φt−1) = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

for all xt−1, yt−1, and φt−1. A function ψt is quasilinear if there is a coefficient bρt−1

y,t ,

which is a function of ρt−1, such that

ψt(yt−1, φt−1) = b
ρt−1

y,t (yt−1 + µt−1).

We will also refer to a policy as quasilinear if component functions associated with times

1, . . . , T − 1 are quasilinear.

Note that quasilinear policies have a particularly intuitive structure. For the arbitrageur,

at each time t, a quasilinear policy is a linear function of yt−1 + µt−1. This quantity can be

interpreted as the arbitrageur’s estimate of the total market overhang at time t− 1, that is,

the number of shares outstanding which must be liquidated by time T . A quasilinear policy

for the trader at time t, in addition, depends linearly on the quantity xt−1 − µt−1. This is

the error of the arbitrageur’s estimate of the trader’s position, that is, the private knowledge

of the trader.

By restricting attention to quasilinear policies and Gaussian beliefs, we can apply an

algorithm similar to that presented in the previous section to compute a Gaussian PBE. In

particular, consider Algorithm 2. This algorithm aims to computes a single-stage equilibrium

that is quasilinear. Further, actions and values are only computed and stored for elements

of the domain for which φt−1 is Gaussian. This is only viable if the iterates U∗t and V ∗t ,

which are computed only for Gaussian φt, provide sufficient information for subsequent
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computations. This is indeed the case, as a consequence of the following result.

Theorem 1. If φt−1 is Gaussian, π̂t is quasilinear, and the arbitrageur assumes that the

trader trades π̂t(xt−1, yt−1, φt−1), then φt is Gaussian.

It follows from this result that if π∗ is quasilinear then, for Gaussian φt−1, F
(ψ∗,π∗)
ut U∗t only

depends on values of U∗t evaluated at Gaussian φt. Similarly, if π∗ is quasilinear then, for

Gaussian φt−1, Gπ
∗
vt V

∗
t only depends on values of V ∗t evaluated at Gaussian φt. It also follows

from this theorem that Algorithm 2, which only computes actions and values for Gaussian

beliefs, results in a Gaussian PBE (π∗, ψ∗). We should mention, though, that Algorithm 2

is still not implementable since the restricted domains of U∗t and V ∗t remain infinite.

Algorithm 2 Quasilinear-Gaussian PBE Solver

1: Initialize the terminal value functions by setting, for all xT−1, yT−1, and Gaussian φT−1,

U∗T−1(xT−1, yT−1, φT−1)← −λ(xT−1 + yT−1)xT−1

V ∗T−1(yT−1, φT−1)← −λ
(∫

xφT−1(dx) + yT−1

)
yT−1

2: for t = T − 1, T − 2, . . . , 1 do
3: Compute quasilinear (π∗t , ψ

∗
t ) such that for all xt−1, yt−1, and Gaussian φt−1,

π∗t (xt−1, yt−1, φt−1) ∈ argmax
ut

(
F

(ψ∗t ,π
∗
t )

ut U∗t

)
(xt−1, yt−1, φt−1)

ψ∗t (yt−1, φt−1) ∈ argmax
vt

(
G
π∗t
vt V

∗
t

)
(yt−1, φt−1)

4: Compute the value functions at the previous time step by setting, for all xt−1, yt−1,
and Gaussian φt−1,

U∗t−1(xt−1, yt−1, φt−1)←
(
F

(ψ∗t ,π
∗
t )

π∗t
U∗t

)
(xt−1, yt−1, φt−1)

V ∗t−1(yt−1, φt−1)←
(
G
π∗t
ψ∗t
V ∗t

)
(yt−1, φt−1)

5: end for

For the remainder of this paper, we will focus on computation of quasilinear-Gaussian

PBE, and as such, we will restrict attention to Gaussian beliefs, with all policies and value

functions defined only over this restricted domain.
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3.3 Value Function Decomposition

Value functions computed by Algorithm 2 exhibit special structure that simplifies their

representation. We now define the form of this special structure.

Definition 4. A function Ut is trader-quadratic-decomposable (TQD) if there are co-

efficients cρtxx,t, c
ρt
yy,t, c

ρt
xy,t, and c

ρt
0,t, which are functions of ρt, such that

Ut(xt, yt, φt) = λ

(
1
2(y2

t − µ2
t ) + 1

2(xt − µt)(yt − µt)− 1
2c
ρt
xx,t(xt − µt)2

− 1
2c
ρt
yy,t(yt + µt)2 − cρtxy,t(xt − µt)(yt + µt) +

σ2
ε

λ2
cρt0,t

)
,

for all xt, yt, and φt. A function Vt as arbitrageur-quadratic-decomposable (AQD) if

there are coefficients dρtyy,t and d
ρt
0,t, which are functions of ρt, such that

Vt(yt, φt) = λ

(
−1

2(y2
t − µ2

t )− 1
2d

ρt
yy,t(yt + µt)2 +

σ2
ε

λ2
dρt0,t

)
,

for all yt and φt.

It is clear that U∗T−1 and V ∗T−1 are TQD/AQD. The following theorem captures how

TQD and AQD structure are retained through the recursion of Algorithm 2.

Theorem 2. If U∗t is TQD and V ∗t is AQD, and Step 3 of Algorithm 2 produces a quasilinear

pair (π∗t , ψ
∗
t ), then U∗t−1 and V ∗t−1, defined by Step 4 of Algorithm 2 are TQD and AQD.

Hence, each pair of value functions generated by Algorithm 2 is TQD/AQD. A great benefit

of this property comes from the fact that, for a fixed value of ρt, each associated value

function can be encoded using just a few parameters.

3.4 Existence

Algorithm 2 relies for each t on existence of a pair (π∗t , ψ
∗
t ) of quasilinear functions that

satisfy single-stage equilibrium conditions. In Section 5, for a range of problem instances,

we compute quasilinear functions that satisfy such equilibrium conditions. However, whether

such equilibria exist for all cases remains an open issue. Here, we support plausibility by
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presenting results on best responses to quasilinear policies. The first asserts that if ψt and

π̂t are quasilinear then there is a quasilinear best-response πt in the single-stage game.

Theorem 3. If Ut is TQD, ψt is quasilinear, and π̂t is quasilinear, then there exists a

quasilinear πt such that

πt(xt−1, yt−1, φt−1) ∈ argmax
ut

(
F (ψt,π̂t)
ut Ut

)
(xt−1, yt−1, φt−1),

for all xt−1, yt−1, and Gaussian φt−1, so long as the optimization problem is bounded.

Similarly, if πt is quasilinear then there is a quasilinear best-response ψt in the single-stage

game.

Theorem 4. If Vt is AQD and πt is quasilinear then there exists a quasilinear ψt such that

ψt(yt−1, φt−1) ∈ argmax
vt

(
GπtvtVt

)
(yt−1, φt−1),

for all yt−1 and Gaussian φt−1, so long as the optimization problem is bounded.

Based on these results, if the trader (arbitrageur) assumes that the arbitrageur (trader) uses a

quasilinear policy then it suffices for the trader (arbitrageur) to restrict himself to quasilinear

policies. Though not a proof of existence, this observation that the set of quasilinear policies

is closed under the operation of best response motivates an aim to compute quasilinear-

Gaussian PBE.

3.5 Dependence on Problem Data

Algorithm 2 takes as input three values that parameterize our model: (λ, σε, T ). The algo-

rithm output can be encoded in terms of coefficients

{
aρtx,t+1, a

ρt
y,t+1, b

ρt
y,t+1, c

ρt
xx,t, c

ρt
yy,t, c

ρt
xy,t, c

ρt
0,t, d

ρt
yy,t, d

ρt
0,t

}
,

for every ρt > 0 and t = 0, . . . , T − 2. These coefficients parameterize quasilinear-Gaussian

PBE policies and corresponding value functions. Note that the output depends on λ and
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σε only through ρt. Hence, given any λ and σε, the algorithm obtains the same coefficients.

This means that the algorithm need only be executed once to obtain solutions for all choices

of λ and σε.

4 Algorithm

The previous section presented abstract algorithms and results that lay the groundwork for

the development of a practical algorithm which we will present in this section. We begin by

discussing a parsimonious representation of policies.

4.1 Representation of Policies

Consider a quasilinear-Gaussian PBE (π∗, ψ∗). Since π∗t and ψ∗t are quasilinear, they can

be written as

π∗t (xt−1, yt−1, φt−1) = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

ψ∗t (yt−1, φt−1) = b
ρt−1

y,t (yt−1 + µt−1).

for all xt−1, yt−1, and φt−1. Here, the coefficients are deterministic functions of ρt−1. For a

fixed value of ρt−1, the coefficients can be stored as three numerical values. However, it is

not feasible to simultaneously store coefficients associated with all possible values of ρt−1.

Fortunately, as established in the following result, the trader’s policy π∗ and the initial value

ρ0 determine subsequent values of ρt.

Theorem 5. If φt−1 is Gaussian, and the arbitrageur assumes that the trader’s policy π̂t is

quasilinear with

π̂t(xt−1, yt−1, φt−1) = â
ρt−1

x,t (xt−1 − µt−1) + â
ρt−1

y,t (yt−1 + µt−1),

then ρt evolves according to

ρ2
t =

(
1 + â

ρt−1

x,t

)2( 1
ρ2
t−1

+ (âρt−1

x,t )2

)−1

.
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In particular, ρt is a deterministic function of ρt−1.

It follows that for a fixed value of ρ0, over the relevant portion of its domain, a quasilinear-

Gaussian PBE can be encoded in terms of 3(T − 1) numerical values. We will design an

algorithm that aims to compute these 3(T − 1) parameters, which we will denote by ax,t,

ay,t and by,t, for t = 1, . . . , T − 1. Note that these parameters allow us to determine PBE

actions at all visited states, so long as the initial value of ρ0 is fixed.

4.2 Searching for Equilibrium Variances

The parameters ax,t, ay,t, and by,t characterize quasilinear-Gaussian PBE policies restricted

to the sequence ρ0, . . . , ρT−1 generated in the quasilinear-Gaussian PBE. We do not know in

advance what this sequence will be, and as such, our algorithm will simultaneously compute

this sequence alongside the policy parameters.

Algorithm 3 searches for ρT−1. For each candidate ρ̂T−1, a recursion computes pre-

ceding values ρ̂T−2, . . . , ρ̂0 along with policy parameters for times T − 1, . . . , 1. Assuming

that single-stage equilibria are successfully computed along the way, the resulting policies

form a quasilinear-Gaussian PBE, restricted to the sequence ρ̂0, . . . , ρ̂T−1 that they would

generate if ρ0 = ρ̂0. The search algorithm seeks a value of ρ̂T−1 such that the resulting ρ̂0

is indeed equal to ρ0. Since information accumulates, it is natural to conjecture that in a

quasilinear-Gaussian PBE, each ρt is monotonically increasing in ρt−1, and therefore, ρT−1

is monotonically increasing in ρ0. This motivates the bisection search: if a choice of ρ̂T−1

leads to a value ρ̂0 > ρ0, the value should be reduced, and vice versa. The search begins

with upper and lower bounds of 0 and min(ρ0, 1); it is not hard to establish that ρT−1 is

within these bounds. This search procedure is reminiscent of the work of Kyle [15], in a

different context.

Note that Step 7 of the algorithm treats ρ̂t−1 as a free variable that is solved alongside

the policy parameters ax,t, ay,t, and by,t. These variables can be computed through solving

a cubic equation, as discussed in Appendix B. Algorithm 3 is implementable and we use it

in computational studies presented in the next section.
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Algorithm 3 Quasilinear-Gaussian PBE Solver with Variance Search

1: ρ
T−1
← 0

2: ρT−1 ← min(ρ0, 1)
3: while ρT−1 − ρT−1

> δ do
4: ρ̂T−1 ← (ρT−1 + ρ

T−1
)/2

5: Initialize the terminal value functions by setting, for all xT−1, yT−1, and Gaussian
φT−1 with variance (ρ̂T−1σε/λ)2,

U∗T−1(xT−1, yT−1, φT−1)← −λ(xT−1 + yT−1)xT−1

V ∗T−1(yT−1, φT−1)← −λ(µT−1 + yT−1)yT−1

6: for t = T − 1, T − 2, . . . , 1 do
7: Compute ρ̂t−1 and quasilinear (π∗t , ψ

∗
t ) such that for all xt−1, yt−1, and Gaussian

φt−1 with variance (ρ̂t−1σε/λ)2,

π∗t (xt−1, yt−1, φt−1) ∈ argmax
ut

(
F

(ψ∗t ,π
∗
t )

ut U∗t

)
(xt−1, yt−1, φt−1)

ψ∗t (yt−1, φt−1) ∈ argmax
vt

(
G
π∗t
vt V

∗
t

)
(yt−1, φt−1)

ρt = ρ̂t

8: Compute the value functions at the previous time step by setting, for all xt−1, yt−1,
and Gaussian φt−1 with variance (ρ̂t−1σε/λ)2,

U∗t−1(xt−1, yt−1, φt−1)←
(
F

(ψ∗t ,π
∗
t )

π∗t
U∗t

)
(xt−1, yt−1, φt−1)

V ∗t−1(yt−1, φt−1)←
(
G
π∗t
ψ∗t
V ∗t

)
(yt−1, φt−1)

9: end for
10: if ρ̂0 ≤ ρ0 then
11: ρ

T−1
← ρ̂T−1

12: else
13: ρT−1 ← ρ̂T−1

14: end if
15: end while
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5 Computational Results

In this section, we present computational results generated using Algorithm 3. In Section 5.1,

we introduce two alternative policies, the equipartitioning policy and the minimum revelation

policy. These are intuitive polices which will serve as a basis of comparison to the quasilinear-

Gaussian PBE policy. In Section 5.2, we discuss the importance of the parameter ρ0 ≡

λσ0/σε in the qualitative behavior of the PBE policy and interpret ρ2
0 as a measure of the

“relative volume” of the trader’s activity in the marketplace. In Section 5.3, we discuss the

relative performance of the policies from the perspective of the execution cost of the trader.

Here, we demonstrate experimentally that the PBE policy can offer substantial benefits.

In Section 5.4, we examine the signaling that occurs through price movements. Finally,

in Section 5.5, we highlight the fact that the PBE policy is dynamic, and seeks to exploit

exogenous market fluctuations in order to minimize execution costs.

5.1 Alternative Policies

In order to understand the behavior of quasilinear-Gaussian PBE policies, we first define

two alternative policies for the trader for the purpose of comparison. In the absence of

an arbitrageur, it is optimal for the trader to minimize execution costs by partitioning

his position into T equally sized blocks and liquidating them sequentially over the T time

periods, as established in [1]. We call the resulting policy πEQ an equipartitioning policy. It

is defined by

πEQ
t (xt−1, yt−1, φt−1) ≡ − 1

T − t+ 1
xt−1,

for all t, xt−1, yt−1, and φt−1.

Alternatively, the trader may wish to liquidate his position in a way so as to reveal

as little information as possible to the arbitrageur. Clearly, trading during the final time

period T reveals no relevant information to the arbitrageur. It is further true that trading

during the penultimate time period T − 1 reveals no useful information to the arbitrageur.

This is because the arbitrageur is constrained to liquidate his remaining holdings at time T ,

hence the arbitrageur’s decision at time T is not influenced by his belief φT−1. We define
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the minimum revelation policy πMR to be a policy that efficiently exploits these facts by

liquidating the trader’s position evenly across only the last two time periods. That is,

πMR
t (xt−1, yt−1, φt−1) ≡


0 if t < T − 1,

−1
2xt−1 if t = T − 1,

−xt−1 if t = T ,

for all t, xt−1, yt−1, and φt−1.

5.2 Relative Volume

As we observed in Section 4.1, quasilinear-Gaussian PBE policies are determined as a func-

tion of the composite parameter ρ0 ≡ λσ0/σε. In order to interpret this parameter, consider

the dynamics of price changes,

∆pt = λ(ut + vt) + εt, εt ∼ N(0, σ2
ε ).

Here, we interpreted εt as the exogenous, random component of price changes. Alternatively,

we can imagine the random component of price changes are arising from the price impact of

“noise traders”. Denote by zt the total order flow from noise traders at time t, and consider

a model where

∆pt = λ(ut + vt + zt), zt ∼ N(0, σ2
z).

If σε = λσz, these two models are equivalent. In that case,

ρ0 ≡
λσ0

σε
=
σ0

σz
.

In other words, we can interpret ρ0 as the ratio of the uncertainty of the total volume of the

trader’s activity to the per period volume of noise trading. As such, we refer to ρ0 as the

relative volume.

We shall see in the following sections that, qualitatively, the performance and behavior
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of PBE policies are determined by the magnitude of ρ0. In the high relative volume regime,

when ρ0 is large, either the initial position uncertainty σ0 is very large or the volatility σz

of the noise traders is very small. In these cases, from the perspective of the arbitrageur,

the trader’s activity contributes a significant informative signal which can be decoded in

the context of less significant exogenous random noise. Hence, the trader’s activity early in

the time horizon reveals significant information which can be exploited by the arbitrageur.

Thus, it may be better for the trader to defer his liquidation until the end of the time

horizon.

Alternatively, in the low relative regime, when ρ0 is small, the arbitrageur cannot effec-

tively distinguish the activity of the trader from the noise traders in the market. Hence,

the trader is free to distribute his trades across the time horizon so as to minimize market

impact, without fear of front-running by the arbitrageur.

5.3 Policy Performance

In this section, we will compare how various policies for the trader perform.

Consider a pair of policies (π, ψ), and assume that the arbitrageur begins with a position

y0 = 0 and an initial belief φ0 = N(0, σ2
0). Given an initial position x0, the trader’s expected

profit is Uπ,ψ0 (x0, 0, φ0). One might imagine, however, that the initial position x0 represents

one of many different trials where the trader liquidates positions. It makes sense for this

distribution of x0 over trials to be consistent with the arbitrageurs belief φ0, since this

belief could be based on past trials. Given this distribution, averaging over trials results in

expected profit

E
[
Uπ,ψ0 (x0, 0, φ0)

∣∣∣ x0 ∼ φ0

]
.

Alternatively, if the trader liquidates his entire position immediately, the expected profit

becomes

E
[
−λx2

0

∣∣ x0 ∼ φ0

]
= −λσ2

0.
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We define the trader’s normalized profit Ū(π, ψ) to be the ratio

Ū(π, ψ) ≡
E
[
Uπ,ψ0 (x0, 0, φ0)

∣∣∣ x0 ∼ φ0

]
λσ2

0

.

Similarly, the arbitrageur’s normalized profit V̄ (π, ψ) is defined to be

V̄ (π, ψ) ≡
E
[
V π,ψ

0 (x0, 0, φ0)
∣∣∣ x0 ∼ φ0

]
λσ2

0

.

Given a quasilinear-Gaussian PBE (π∗, ψ∗), since the value function Uπ
∗,ψ∗

0 is TQD, we

have

Ū(π∗, ψ∗) =
λ
(
−1

2c
ρ0
xx,0σ

2
0 + σ2

ε
λ2 c

ρ0
0,0

)
λσ2

0

= −1
2
cρ0xx,0 +

1
ρ2

0

cρ00,0,

where cρ0xx,0 and cρ00,0 are the trader’s appropriate value function coefficients at time t = 0.

Similarly,

V̄ (π∗, ψ∗) =
λ
(
σ2
ε
λ2 d

ρ0
0,0

)
λσ2

0

=
1
ρ2

0

dρ00,0,

where dρ00,0 is the arbitrageur’s appropriate value function coefficients at time t = 0. Thus,

the normalized profits of the PBE policy depends on the parameters (σ0, λ, σε) only through

the quantity ρ0 ≡ λσ0/σε.

Similarly, given the equipartitioning policy πEQ, define ψEQ to be the optimal response

of the arbitrageur to the trader’s policy πEQ. This best response policy can be computed

by solving the linear-quadratic control problem corresponding to (2.2), via dynamic pro-

gramming. Using a similar argument as above, it is easy to see that Ū(πEQ, ψEQ) and

V̄ (πEQ, ψEQ) are also functions of the parameter ρ0.

Finally, given the minimum revelation policy πMR, define ψMR to be the optimal response

of the arbitrageur to the trader’s policy πMR. It can be shown that, when y0 = 0 and µ0 = 0,

the best response of the arbitrageur to the minimum revelation policy is to do nothing–since

no information is revealed by the trader in a useful fashion, there is no opportunity to
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front-run. Hence,

Ū(πMR, ψMR) =
E
[
−1

2λx
2
0 − 1

4λx
2
0

∣∣ x0 ∼ φ0

]
λσ2

0

= −3
4
, V̄ (πMR, ψMR) = 0.

In Figure 1, the relative profit of the various policies are plotted as functions of the

relative volume ρ0, for a time horizon T = 20. In all scenarios, as one might expect, the

trader’s profit is negative while the arbitrageur’s profit is positive. In all cases, the trader’s

profit under the PBE policy dominates that under either the equipartitioning policy or the

minimum revelation policy. This difference is significant in moderate to high relative volume

regimes.

In the high relative volume regime, the equipartitioning policy fairs particularly badly

from the perspective of the trader, performing a up to a factor of 2 worse than the PBE policy.

This effect becomes more pronounced over longer time horizons. The minimum revelation

policy performs about as well as the PBE policy. Asymptotically as ρ0 ↑ ∞, these policies

offer equivalent performance in the sense that Ū(π∗, ψ∗) ↑ Ū(πMR, ψMR) = 3/4.

On the other hand, in the low relative volume regime, the equipartitioning policy and the

PBE policy perform comparably. Indeed, define ψ0 by ψ0
t ≡ 0 for all t (that is, no trading

by the arbitrageur). In the absence of an arbitrageur, equipartitioning is the optimal policy

for the trader, and backward recursion can be used to show that

Ū(πEQ, ψ0) =
T + 1

2T
≈ 1

2
.

Asymptotically as ρ0 ↓ 0, Ū(πEQ, ψEQ) ↓ Ū(πEQ, ψ0) and Ū(π∗, ψ∗) ↓ Ū(πEQ, ψ0). Thus,

when the relative volume is low, the effect of the arbitrageur becomes negligible when ρ0 is

sufficiently small.

Examining Figure 1, it is clear that, for any given pair of policies, the magnitude of

the normalized loss of the trader exceeds the normalized profit of the arbitrageur. The

difference in these two quantities can be interpreted as a benefit to the other participants
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Figure 1: The relative profit of trading strategies for the time horizon T = 20.

in the market. Define the market surplus to be the quantity

Ū(πEQ, ψ0)−
(
Ū(π∗, ψ∗) + V̄ (π∗, ψ∗)

)
.

This is the difference between the normalized profit of the trader in the absence of the

arbitrageur, under the optimal equipartitioning policy, and the combined normalized profits

of the trader and arbitrageur in equilibrium. The market surplus measures the benefit of

the arbitrageur’s presence to the other participants of the system. Note that this benefit is

positive, and it is most significant in the high relative volume regime.

5.4 Signaling

An important aspect of the PBE policy is that it accounts for information conveyed through

price movements. In order to understand this feature, we define the relative uncertainty

to be the standard deviation of the arbitrageur’s belief of the trader’s decision at time t,

relative to that of the belief at time 0; i.e., the ratio σt/σ0. By considering the evolution of

relative uncertainty over time for the PBE policy versus the equipartitioning and minimum
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Figure 2: The market surplus of the system for the time horizon T = 20.

revelation policies, we can study the comparative signaling behavior.

Relative uncertainty has another interpretation. If we assume, as in Section 5.3, that

the arbitrageur has initial position y0 = 0 and initial belief φ0 = N(0, σ2
0), and that the

trader’s initial position is sampled from the distribution φ0 (and thus is consistent with the

arbitrageur’s belief), then
σt
σ0

=

√
E
[
x2
t

∣∣ x0 ∼ φ0

]
E
[
x2

0

∣∣ x0 ∼ φ0

] .
Thus, relative uncertainty at time t gives a measure of the size of the trader’s outstanding

position at that time, in a root-mean-squared sense.

Under the PBE policy, the evolution of the relative uncertainty σt/σ0 over time is deter-

ministic and depends only on the parameter ρ0. This is because of the fact that σt/σ0 = ρt/ρ0

and the results in Section 4.1. Under the equipartitioning policy, the relative uncertainty

decreases linearly, according to
σt
σ0

=
T − t
T

.

Under the minimum revelation policy, the relative uncertainty decays only over the final two
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time steps, according to

σt
σ0

=


1 if t < T − 1,

1
2 if t = T − 1,

0 if t = T .

In Figure 3, we can see the evolution of the relative uncertainty of the PBE policy, for

different values of ρ0, as compared to the equipartitioning and minimum revelation policies.

In the low relative volume regime, the relative uncertainty of the PBE policy evolves very

similarly to that of the equipartitioning policy, decaying almost linearly. In the high relative

volume regime, almost very little information is revealed until close to the end of the trading

period. These observations are consistent with our results from Section 5.3.

0.0

0.5

1.0

0 5 10 15 20
t

σt
σ0

πEQ

π∗, ρ0 = 1

π∗, ρ0 = 10

π∗, ρ0 = 100
πMR

Figure 3: The evolution over time of the relative uncertainty σt/σ0 of the trader’s position
for the time horizon T = 20.
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5.5 Dynamic Trading

One important feature of the PBE policy is that it is dynamic and exhibits complex be-

havior that is market dependent. The quantities traded depend on the random exogenous

fluctuations of the market. Indeed, the trader may seek to exploit these fluctuations so

as to minimize execution costs. This is in contrast to the equipartitioning and minimum

revelation policies, which are deterministic.

We can observe this dynamic behavior as follows: define the random variable

∆ ≡
T∑
t=1

εt.

The variable ∆ is the cumulative exogenous movement of the market over the trading hori-

zon. Define

x̄t ≡ E[xt | ∆], ȳt ≡ E[yt | ∆], µ̄t ≡ E[µt | ∆].

These quantities are, respectively, the expectation of the trader’s position, the arbitrageur’s

position, and the arbitrageur’s mean belief, conditioned on a particular level of cumulative

market movement. By conditioning on the variable ∆, we can explore the most likely

behavior of the system under various market scenarios.

Figure 4 plots the evolution of (x̄t, ȳt, µ̄t) under such several scenarios, given the param-

eters

x0 = σ0 = 105, µ0 = 0, λ = 5× 10−5, σε = 0.125, T = 20.

(Here, we use values for λ, σε, and T suggested in [1].) Note that, in this instance, x0 6= µ0.

That is, the arbitrageur’s initial mean estimate is incorrect.

In Figure 4(a), we see a neutral market scenario, where ∆ = 0. Note that, since ρ0 = 40,

the system is in a high relative volume regime. Hence, the trader attempts to conceal his

true position and trades only minimally prior to the end of the time horizon.

In Figure 4(b), we see a 2 standard deviation up market scenario, where ∆ = 2σε
√
T .

Here, the exogenous upward movement of the market leads the arbitrageur to believe that

the trader is short the stock, when, in fact, the trader is long. The trader then anticipates
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buying on the part of the arbitrageur, and seeks to exploit this by increasing his position.

In Figure 4(c), we see a 2 standard deviation down market scenario, where ∆ = −2σε
√
T .

In this case, the arbitrageur assumes that the downward movement of the market is due to

selling on the part of the trader, and attempts to front-run future selling. The trader is thus

forced to liquidate his position faster than in the other scenarios.

6 Conclusion

Our model captures strategic interactions between a trader aiming to liquidate a position

and an arbitrageur trying to detect and profit from the trader’s activity. The algorithm we

have developed computes perfect Bayesian equilibrium behavior. It is interesting that the

resulting trader policy takes on such a simple form: the number of shares to liquidate at time

t is linear in the difference xt−1 − µt−1 between the trader’s position and the arbitrageur’s

estimate and the sum yt−1+µt−1 of the arbitrageur’s position and his estimate of the trader’s

position. The coefficients of the policy depend only on the relative volume parameter ρ0,

which quantifies the magnitude of the trader’s position relative to the typical market activity,

and the time horizon T . This policy offers useful guidance beyond what has been derived

in models that do not account for arbitrageur behavior. In the absence of an arbitrageur,

it is optimal to trade equal amounts over each time period, which corresponds to a policy

that is linear in xt−1. The difference in the PBE policy stems from its accounting of the

arbitrageur’s inference process. In particular, the policy reduces information revealed to the

arbitrageur by delaying trades, takes advantage of situations where the arbitrageur has been

misled by unusual market activity, and occasionally places trades intended to mislead the

arbitrageur.

Our model represents a starting point for the study of game theoretic behavior in trade

execution. It has an admittedly simple structure, and this allows for a tractable analysis

that highlights the importance of information signaling. There are a number of extensions

to this model that are possible, however, and that warrant further discussion:

1. (Risk Aversion) We assume that both the trader and arbitrageur are risk-neutral.
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Figure 4: The expected evolution over time of the trader’s position, the arbitrageur’s po-
sition, and the arbitrageur’s mean belief, conditioned on the exogenous market movement.
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Risk aversion is clearly an important facet of investor behavior, and should be included

in the trade execution model.

2. (Flexible Time Horizon)We assume a finite time horizon T for the trader and arbi-

trageur. The choice of time horizon has an impact on the resulting equilibrium policies,

and there are clearly end-of-horizon effects in the policies computed in Section 5. To

some extent it seems artificial to impose a fixed time horizon as an exogenous restric-

tion on behavior. Fixed horizon models preclude the trader from delaying liquidation

beyond the horizon even if this can yield significant benefits, for example. A better

model would be to consider an infinite horizon game, where risk aversion provides the

motivation for liquidating a position sooner rather than later.

3. (Uncertain Trader) In our model, we assume that the arbitrageur is uncertain of

the trader’s position, but that the trader knows everything. A more realistic model

would allow for uncertainty on the part of the trader as well, and would allow for the

arbitrageur to mislead the trader.

4. (Multi-player Games) Our model restricts to a single trader and arbitrageur. A

natural extension would be to consider multiple traders and arbitrageurs that are

uncertain about each others’ positions and must compete in the marketplace as they

unwind. Such a generalized model could be useful for analysis of important liquidity

issues such as those arising from the credit crunch of 2007.

Finally, beyond the immediate context of our model, there are many directions worth

exploring. One important avenue is to factor data beyond price into the execution strategy.

For example, volume data may play a significant role in the arbitrageur’s inference, in which

case it should also influence execution decisions. Limit order book data may also be relevant.

Developing tractable models that account for such data remains a challenge. One initiative

to incorporate limit order book data into the decision process is presented in [16].

29



Acknowledgments

The first author wishes to thank Mark Broadie and Gabriel Weintraub for helpful comments.

The second author is grateful to the Samsung Scholarship Foundation for financial support.

This research was conducted while the third author was visiting the Faculty of Commerce

and Accountancy at Chulalongkorn University and supported by the Chin Sophonpanich

Foundation Fund.

References
[1] D. Bertsimas and A. W. Lo. Optimal control of execution costs. Journal of Financial Markets,

1:1–50, 1998.

[2] A. Obizhaeva and J. Wang. Optimal trading strategy and supply/demand dynamics. preprint,
2005.

[3] A. Alfonsi, A. Schied, and A. Schulz. Constrained portfolio liquidation in a limit order book
model. preprint, 2007.

[4] R. Almgren. Optimal execution with nonlinear impact functions and trading-enhanced risk.
Applied Mathematical Finance, 10:1–18, 2003.

[5] A. Alfonsi, A. Schied, and A. Schulz. Optimal execution strategies in limit order books with
general shape functions. preprint, 2007.

[6] A. Subramanian and R. A. Jarrow. The liquidity discount. Mathematical Finance, 11(4):447–
474, 2001.

[7] R. Almgren and N. Chriss. Optimal control of portfolio transactions. Journal of Risk, 3:5–39,
2000.

[8] R. Dubil. Optimal liquidation of large security holdings in thin markets. In Y. Shachmurove,
editor, Research in International Entrepreneurial Finance and Business Ventures at the Turn
of the Third Millennium. Academy of Entrepreneurial Finance, 2002.

[9] G. Huberman and W. Stanzl. Optimal liquidity trading. Review of Finance, 9:165–200, 2005.

[10] A. Schied and T. Schönenborn. Optimal portfolio liquidation for CARA investors. preprint,
2007.

[11] M. K. Brunnermeier and L. H. Pedersen. Predatory trading. Journal of Finance, 60(4):1825–
1863, 2005.

[12] B. I. Carlin, M. S. Lobo, and S. Viswanathan. Episodic liquidity crises: Cooperative and
predatory trading. Journal of Finance, 62(5):2235–2274, 2007.

[13] T. Schönenborn and A. Schied. Liquidation in the face of adversity: stealth vs. sunshine trading,
predatory trading vs. liquidity provision. preprint, 2007.

[14] D. Fudenberg and J. Tirole. Game Theroy. MIT Press, Cambridge, MA, 1991.

[15] A. S. Kyle. Continuous auctions and insider trading. Econometrica, 53(6):1315–1335, November
1985.

[16] Y. Nevmyvaka, Y. Feng, and M. Kearns. Reinforcement learning for optimized trade execu-
tion. In Proceedings of the 23rd international conference on machine learning. Association for
Computing Machinery, 2006.

30



A Proofs

Theorem 1. If φt−1 is Gaussian, π̂t is quasilinear, and the arbitrageur assumes that the

trader trades π̂t(xt−1, yt−1, φt−1), then φt is Gaussian.

Proof. Suppose that

π̂t(xt−1, yt−1, φt−1) = â
ρt−1

x,t (xt−1 − µt−1) + â
ρt−1

y,t (yt−1 + µt−1)

= â
ρt−1

x,t xt−1 + â
ρt−1

µ,t µt−1 + â
ρt−1

y,t yt−1,

where âρt−1

µ,t ≡ â
ρt−1

y,t − â
ρt−1

x,t . Set (Kt−1, ht−1) to be the information form parameters for the

Gaussian distribution φt−1, so that

Kt−1 ≡ 1/σ2
t−1, and ht−1 ≡ µt−1/σ

2
t−1.

Define φ+
t−1 to be the distribution of xt−1 conditioned on all information seen by the

arbitrageur at times up to and including t. That is,

φ+
t−1(S) ≡ P (xt−1 ∈ S | φt−1, yt−1, λ(π̂t(xt−1, yt−1, φt−1) + vt) + εt = ∆pt) ,

where ∆pt is the price change observed at time t. By Bayes’ rule, this distribution has
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density

φ+
t−1(dx) ∝ φt−1(dx) exp

(
−
(
∆pt − λ(πt(x, yt−1, φt−1) + ψt(yt−1, φt−1))

)2
2σ2

ε

)

∝ exp

(
−1

2Kt−1x
2 + ht−1x

−
(
∆pt − λ(âρt−1

x,t x+ â
ρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1 + ψt)
)2

2σ2
ε

)
dx

∝ exp

(
−1

2Kt−1x
2 + ht−1x

−
λ2(âρt−1

x,t )2x2 − 2λ
(
∆pt − λ(âρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1 + ψt)
)
â
ρt−1

x,t x

2σ2
ε

)
dx

= exp

(
−1

2

(
Kt−1 +

λ2(âρt−1

x,t )2

σ2
ε

)
x2

+

(
ht−1 +

λ
(
∆pt − λ(âρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1 + ψt)
)
âx,t

σ2
ε

)
x

)
dx.

Thus, φ+
t−1 is a Gaussian distribution, with variance

(
Kt−1 +

λ2(âρt−1

x,t )2

σ2
ε

)−1

,

and mean

(
Kt−1 +

λ2(âρt−1

x,t )2

σ2
ε

)−1(
ht−1 +

λ
(
∆pt − λ(âρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1 + ψt)
)
âx,t

σ2
ε

)
.

Now, note that

xt = xt−1 + π̂t(xt−1, yt−1, φt−1) = (1 + â
ρt−1

x,t )xt−1 + â
ρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1.

Then, φt is also a Gaussian distribution, with variance

(A.1) σ2
t = (1 + â

ρt−1

x,t )2

(
Kt−1 +

λ2(âρt−1

x,t )2

σ2
ε

)−1

= (1 + âx,t)2

(
1

σ2
t−1

+
λ2(âρt−1

x,t )2

σ2
ε

)−1

,
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and mean

µt = â
ρt−1

y,t yt−1 + â
ρt−1

µ,t µt−1

+ (1 + â
ρt−1

x,t )
ht−1 +

λ
(

∆pt−λ(â
ρt−1
y,t yt−1+â

ρt−1
µ,t µt−1+ψt)

)
âx,t

σ2
ε

Kt−1 +
λ2(â

ρt−1
x,t )2

σ2
ε

= â
ρt−1

y,t (yt−1 + µt−1)− âρt−1

x,t µt−1

+ (1 + â
ρt−1

x,t )

µt−1

σ2
t−1

+
λ
(

∆pt−λ(â
ρt−1
y,t (yt−1+µt−1)−âρt−1

x,t µt−1+ψt)
)
âx,t

σ2
ε

1
σ2
t−1

+
λ2(â

ρt−1
x,t )2

σ2
ε

= â
ρt−1

y,t (yt−1 + µt−1)− âρt−1

x,t µt−1

+ (1 + â
ρt−1

x,t )
µt−1/ρ

2
t−1 +

(
∆pt/λ− âρt−1

y,t (yt−1 + µt−1) + â
ρt−1

x,t µt−1 − ψt
)
âx,t

1/ρ2
t−1 + (âρt−1

x,t )2
.

(A.2)

�

In order to prove Theorems 2–4, it is necessary to explicitly evaluate the operator F (ψt,πt)
ut

applied to quadratic functions of (xt, yt, µt) and the operator Gπtvt applied to quadratic func-

tions of (yt, µt). The following lemma is helpful for this purpose, as it provides expressions

for the expectation of µt and µ2
t under various distributions.

Lemma 1. Assume that the the quasilinear policies ψt and πt are defined so that

πt(xt−1, yt−1, φt−1) = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

ψt(yt−1, φt−1) = b
ρt−1

y,t (yt−1 + µt−1).

Define

γ
ρt−1

t ≡
1 + a

ρt−1

x,t

1/ρ2
t−1 + (aρt−1

x,t )2
.
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Then,

E(ψt,πt)
ut [µt | xt−1, yt−1, φt−1] = a

ρt−1

y,t (yt−1 + µt−1)− aρt−1

x,t µt−1

+ γ
ρt−1

t /ρ2
t−1

+ γ
ρt−1

t a
ρt−1

x,t

(
ut + a

ρt−1

x,t µt−1 − aρt−1

y,t (yt−1 + µt−1)
)
,

(A.3a)

Var(ψt,πt)
ut [µt | xt−1, yt−1, φt−1] =

(
γ
ρt−1

t a
ρt−1

x,t σε/λ
)2
,(A.3b)

E(ψt,πt)
ut

[
µ2
t

∣∣ xt−1, yt−1, φt−1

]
= Var(ψt,πt)

ut [µt | xt−1, yt−1, φt−1] ,

+
(
E(ψt,πt)
ut [µt | xt−1, yt−1, φt−1]

)2
,

(A.3c)

Eπtvt [µt | yt−1, φt−1] = a
ρt−1

y,t (yt−1 + µt−1) + µt−1,(A.3d)

Varπtvt [µt | yt−1, φt−1] =
(
γ
ρt−1

t a
ρt−1

x,t σε/λ
)2 (1 +

(
a
ρt−1

x,t

)2
ρ2
t−1

)
,(A.3e)

Eπtvt
[
µ2
t

∣∣ yt−1, φt−1

]
= Varπtvt [µt | yt−1, φt−1] +

(
Eπtvt [µt | yt−1, φt−1]

)2
.(A.3f)

Proof. The lemma follows directly from taking expectations of the mean update equation

(A.2). �

Theorem 2. If U∗t is TQD and V ∗t is AQD, and Step 3 of Algorithm 2 produces a quasilinear

pair (π∗t , ψ
∗
t ), then U∗t−1 and V ∗t−1, defined by Step 4 of Algorithm 2 are TQD and AQD.

Proof. Suppose that

V ∗t (yt, φt) = λ

(
−1

2(y2
t − µ2

t )− 1
2d

ρt
yy,t(yt + µt)2 +

σ2
ε

λ2
dρt0,t

)
,

π∗t (xt−1, yt−1, φt−1) = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

ψ∗t (yt−1, φt−1) = b
ρt−1

y,t (yt−1 + µt−1).
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If the trader uses the policy π∗t and the arbitrageur uses the policy ψ∗, we have

ut = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

vt = b
ρt−1

y,t (yt−1 + µt−1),

yt = yt−1 + b
ρt−1

y,t (yt−1 + µt−1)

Using these facts, and (A.3d)–(A.3f) from Lemma 1, we can explicitly compute

V ∗t−1(yt−1, φt−1) =
(
G
π∗t
ψ∗t
V
)
(yt−1, φt−1)

= E
π∗t
ψ∗t

[
λ(ut + vt)yt−1 + V ∗t (yt, φt)

∣∣∣ yt−1, φt−1

]
= λ

(
−1

2(y2
t−1 − µ2

t−1)− 1
2d

ρt−1

yy,t−1(yt−1 + µt−1)2 +
σ2
ε

λ2
d
ρt−1

0,t−1

)
,

where

d
ρt−1

yy,t−1 =
(
b
ρt−1

y,t

)2 − 2aρt−1

y,t −
(
a
ρt−1

y,t

)2 +
(
1 + b

ρt−1

y,t + a
ρt−1

y,t

)2
dρtyy,t,

d
ρt−1

0,t−1 = dρt0,t + 1
2

(
γ
ρt−1

t a
ρt−1

x,t

)2 (1− dρtyy,t)
(

1 +
(
a
ρt−1

x,t ρt−1

)2)
.

Therefore, V ∗t−1 is AQD. Similarly, we can check that U∗t−1 is TQD. �

Theorem 3. If Ut is TQD, ψt is quasilinear, and π̂t is quasilinear, then there exists a

quasilinear πt such that

πt(xt−1, yt−1, φt−1) ∈ argmax
ut

(
F (ψt,π̂t)
ut Ut

)
(xt−1, yt−1, φt−1),

for all xt−1, yt−1, and Gaussian φt−1, so long as the optimization problem is bounded.

Proof. Suppose that

Ut(xt, yt, φt) = λ

(
1
2(y2

t − µ2
t ) + 1

2(xt − µt)(yt − µt)− 1
2c
ρt
xx,t(xt − µt)2

− 1
2c
ρt
yy,t(yt + µt)2 − cρtxy,t(xt − µt)(yt + µt) +

σ2
ε

λ2
cρt0,t

)
,

π̂t(xt−1, yt−1, φt−1) = â
ρt−1

x,t (xt−1 − µt−1) + â
ρt−1

y,t (yt−1 + µt−1),

ψt(yt−1, φt−1) = b
ρt−1

y,t (yt−1 + µt−1).
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If the trader takes the action ut, while the arbitrageur uses the policy ψ∗t and assumes that

the trader uses the policy π̂t, we have

vt = b
ρt−1

y,t (yt−1 + µt−1),

xt = xt−1 + ut,

yt = yt−1 + b
ρt−1

y,t (yt−1 + µt−1).

Using these facts, and (A.3a)–(A.3c) from Lemma 1, we can explicitly compute

(
F (ψt,π̂t)
ut Ut

)
(xt−1, yt−1, φt−1) = E(ψt,π̂t)

ut [λ(ut + vt)xt−1 + Ut(xt, yt, φt) | xt−1, yt−1, φt−1] .

It is easily checked that
(
F

(ψt,π̂t)
ut Ut

)
(xt−1, yt−1, φt−1) is quadratic in ut. Moreover, the

coefficient of u2
t is independent of (xt−1, yt−1, µt−1) while the coefficient of ut is linear in

(xt−1, yt−1, µt−1). Therefore, the optimizing u∗t is linear in (xt−1, yt−1, µt−1). The value of

u∗t can be explicitly computed as

u∗t = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

where

ρ2
t =

(
1 + â

ρt−1

x,t

)2( 1
ρ2
t−1

+ (âρt−1

x,t )2

)−1

,

a
ρt−1

x,t =
1

2Zρtt

(
−2cρtxx,t + γ

ρt−1

t â
ρt−1

x,t (2cρtxx,t − 2cρtxy,t − 1) + 2
)
,

a
ρt−1

y,t =
1

2Zρtt

(
(γρt−1

t â
ρt−1

x,t − 1)Y ρt−1

x,t

+ 2γρt−1

t â
ρt−1

x,t (−bρt−1

y,t + γ
ρt−1

t â
ρt−1

x,t â
ρt−1

y,t − â
ρt−1

y,t − 1)cρtyy,t
)
,

Y
ρt−1

x,t = (bρt−1

y,t + 1)(2cρtxy,t − 1)

+ â
ρt−1

y,t

(
2(γρt−1

t â
ρt−1

x,t − 1)cρtxx,t + (2− 4γρt−1

t â
ρt−1

x,t )cρtxy,t + 1
)
,

Zρtt = cρtxx,t + γ
ρt−1

t â
ρt−1

x,t

((
γ
ρt−1

t â
ρt−1

x,t − 2
)
cρtxx,t + 2cρtxy,t + γ

ρt−1

t â
ρt−1

x,t

(
cρtyy,t − 2cρtxy,t

)
+ 1
)
.

Clearly, u∗t is quasilinear. �
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Theorem 4. If Vt is AQD and πt is quasilinear then there exists a quasilinear ψt such that

ψt(yt−1, φt−1) ∈ argmax
vt

(
GπtvtVt

)
(yt−1, φt−1),

for all yt−1 and Gaussian φt−1, so long as the optimization problem is bounded.

Proof. Suppose that

Vt(yt, φt) = λ

(
−1

2(y2
t − µ2

t )− 1
2d

ρt
yy,t(yt + µt)2 +

σ2
ε

λ2
dρt0,t

)
,

πt(xt−1, yt−1, φt−1) = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1).

If the arbitrageur takes the action vt and assumes that the trader uses the policy πt, we have

ut = a
ρt−1

x,t (xt−1 − µt−1) + a
ρt−1

y,t (yt−1 + µt−1),

yt = yt−1 + vt.

Using these facts, and (A.3d)–(A.3f) from Lemma 1, we can explicitly compute

(
GπtvtVt

)
(yt−1, φt−1) = Eπtvt [λ(πt + vt)yt−1 + Vt(yt, φt) | yt−1, φt−1] .

It is easily checked that
(
GπtvtVt

)
(yt−1, φt−1) is quadratic in vt. Moreover, the coefficient of v2

t

is independent of (yt−1, µt−1) while the coefficient of vt is linear in (yt−1, µt−1). Therefore,

the optimizing v∗t is linear in (yt−1, µt−1). The value of v∗t can be explicitly computed as

v∗t = −
(
a
ρt−1

y,t + 1
)
dρtyy,t

dρtyy,t + 1
(yt−1 + µt−1),

where

ρ2
t =

(
1 + a

ρt−1

x,t

)2( 1
ρ2
t−1

+ (aρt−1

x,t )2

)−1

.

Clearly, v∗t is quasilinear. �

Theorem 5. If φt−1 is Gaussian, and the arbitrageur assumes that the trader’s policy π̂t is

37



quasilinear with

π̂t(xt−1, yt−1, φt−1) = â
ρt−1

x,t (xt−1 − µt−1) + â
ρt−1

y,t (yt−1 + µt−1),

then ρt evolves according to

ρ2
t =

(
1 + â

ρt−1

x,t

)2( 1
ρ2
t−1

+ (âρt−1

x,t )2

)−1

.

In particular, ρt is a deterministic function of ρt−1.

Proof. The result follows directly from (A.1) in the proof of Theorem 1. �

B Single-Stage Quasilinear Equilibrium Computation

In Step 7 of Algorithm 3, we solve for the single-stage quasilinear equilibrium policy param-

eters (ax,t, ay,t, by,t) and the scaled uncertainty parameter ρ̂t−1. In this section, we describe

how this is accomplished as follows.

First, for every ρ > 0, define N (ρ) to be the set of Gaussian distributions with variance

(ρσε/λ)2. By hypothesis, the value of ρ̂t is fixed. Thus, we can assume that φt ∈ N (ρ̂t).

Now, suppose that φt−1 ∈ N (ρ̂t−1), for some ρ̂t−1 > 0 (which we will solve for shortly).

Since V ∗t is AQD and U∗t is TQD, they can be parameterized for φt ∈ N (ρ̂t) as

V ∗t (yt, µt) = λ

(
−1

2(y2
t − µ2

t )− 1
2dyy,t(yt + µt)2 +

σ2
ε

λ2
d0,t

)
,

U∗t (xt, yt, µt) = λ

(
1
2(y2

t − µ2
t ) + 1

2(xt − µt)(yt − µt)− 1
2cxx,t(xt − µt)

2

− 1
2cyy,t(yt + µt)2 − cxy,t(xt − µt)(yt + µt) +

σ2
ε

λ2
c0,t

)
.

Now, suppose that that the arbitrageur believes the trader is employing a policy

π̂t(xt−1, yt−1, µt−1) = âx,t(xt−1 − µt−1) + ây,t(yt−1 + µt−1),

for all φt−1 ∈ N (ρ̂t−1). From Theorem 5, in order to guarantee that φt ∈ N (ρ̂t), it must be
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the case either âx,t = −1 (in which case ρ̂t−1 is indeterminate) or that

ρ̂2
t−1 =

((
1 + âx,t
ρ̂t

)2

− (âx,t)2

)−1

.

By the same arguments as in Theorem 4, the arbitrageur’s optimal response problem

ψ∗t (yt−1, µt−1) ∈ argmax
vt

(
Gπ̂tvtV

∗
t

)
(yt−1, µt−1)

is bounded if

(B.1) 1 + dyy,t > 0,

in which case it has a unique optimal solution of the form

ψ∗t (yt−1, µt−1) = byy,t(yt−1 − µt−1),

where

byy,t = −(ây,t + 1) dyy,t
dyy,t + 1

.

Similarly, by the same arguments as in Theorem 3, the trader’s optimal response problem

π∗t (xt−1, yt−1, µt−1) ∈ argmax
ut

(
F

(ψ∗t ,π̂
∗
t )

ut U∗t

)
(xt−1, yt−1, µt−1)

is bounded if

(B.2) cxx,t + γtax,t ((γtax,t − 2) cxx,t + 2cxy,t + γtax,t (cyy,t − 2cxy,t) + 1) > 0,

where

γt =
1 + âx,t

1/ρ2
t−1 + (âρt−1

x,t )2
=

ρ2
t

1 + âx,t
.
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In this case, it has a unique optimal solution of the form

π∗t (xt−1, yt−1, µt−1) = ax,t(xt−1 − µt−1) + ay,t(yt−1 + µt−1).

In order for the PBE to exist, π̂t = π∗t must hold. Explicit solution of the optimal

response problems for the trader and arbitrageur reveal that sufficient conditions for this

are:

1. ax,t solves the cubic polynomial

0 = 2
(
cxx,t

(
1/ρ2

t − 1
)2 + 2cxy,t

(
1/ρ2

t − 1
)

+ cyy,t + 1/ρ2
t

)
(ax,t)3

+ 1/ρ2
t

(
6cxy,t + 6cxx,t

(
1/ρ2

t − 1
)
− 2/ρ2

t + 3
)

(ax,t)2

+ 1/ρ2
t

(
2cxy,t − cxx,t

(
2− 6/ρ2

t

)
− 4/ρ2

t + 1
)
ax,t

+ 2 (cxx,t − 1) /ρ4
t .

(B.3)

2. The trader and arbitrageur’s optimal response problems are bounded, that is, (B.1)

and (B.2) hold.

3. The variance of the distributions at time t− 1 is well-defined and unique, that is,

ax,t 6= −1,

and

ρ̂2
t−1 =

((
1 + ax,t
ρ̂t

)2

− (âx,t)2

)−1

> 0.

4. ay,t and by,t are determined according to

ay,t =
2 (dyy,t + 1)

2dyy,t + 2cxy,t + γtax,t (−2cxy,t + 2cyy,t + 1) + 1
− 1,

by,t = − 2dyy,t
2dyy,t + 2cxy,t + γtax,t (−2cxy,t + 2cyy,t + 1) + 1

.

In practice, we first solve for the roots of (B.3) for putative values of ax,t. For each root,

we attempt to verify the remainder of the conditions.
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It may be the case that it is impossible to satisfy all of the conditions. In this case, we

assume that the value of ρ̂t was set too high, and that there does not exist an equilibrium

with variance (ρ̂tσε/λ)2 at time t. Therefore, we escape from the loop immediately and

lower the guess of ρT−1. Equivalently, we set

ρT−1 ← (ρ
T−1

+ ρT−1)/2.

We resume the loop with this new upper bound.
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