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Episodic Liquidity Crises: Cooperative
and Predatory Trading

BRUCE IAN CARLIN, MIGUEL SOUSA LOBO, and S. VISWANATHAN∗

ABSTRACT

We describe how episodic illiquidity arises from a breakdown in cooperation between
market participants. We first solve a one-period trading game in continuous-time,
using an asset pricing equation that accounts for the price impact of trading. Then, in
a multi-period framework, we describe an equilibrium in which traders cooperate most
of the time through repeated interaction, providing apparent liquidity to one another.
Cooperation breaks down when the stakes are high, leading to predatory trading and
episodic illiquidity. Equilibrium strategies that involve cooperation across markets
lead to less frequent episodic illiquidity, but cause contagion when cooperation breaks
down.

WHY IS ILLIQUIDITY RARE and episodic? Pastor & Stambaugh (2003) detect only
14 aggregate low-liquidity months over the time period 1962 to 1999. Despite
being of significant magnitude, most of the episodes were short-lived and were
followed by long periods of liquidity.1 The origin of this empirical observation
still remains a puzzle. In this paper, we attempt to shed light on this puzzle by
developing a theoretical model in which a breakdown in cooperation between
traders in the market manifests itself in predatory trading. This mechanism
leads to sudden and short-lived illiquidity.

We develop a dynamic model of trading based on liquidity needs. During each
period, a liquidity event may occur in which a trader is required to liquidate a
large block of an asset in a relatively short time period. This need for liquidity
is observed by a tight oligopoly, whose members may choose to predate or coop-
erate. Predation involves racing and fading the distressed trader to the market,
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causing an adverse price impact for the trader.2 Cooperation involves refraining
from predation and allows the distressed trader to transact at more favorable
prices. In our model, traders cooperate most of the time through repeated in-
teraction, providing “apparent liquidity” to one another. However, episodically
this cooperation breaks down, especially when the stakes are high, which leads
to opportunism and the loss of this apparent liquidity.

The following quote provides a recent example of an episodic breakdown in
cooperation between two cooperative periods in the European debt market (New
York Times, Sept. 15, 2004):

The bond sale, executed Aug. 2, caused widespread concern in Europe’s
markets. Citigroup sold 11 billion euros of European government debt
within minutes, mainly through electronic trades, then bought some of it
back at lower prices less than an hour later, rival traders say. Though the
trades were not illegal, they angered other bond houses, which said the
bank violated an unspoken agreement not to flood the market to drive
down prices.3

This quote suggests that market participants generally cooperate, though there
is episodic predation that leads to acute changes in prices. Note that predatory
behavior can involve either exploiting a distressed trader’s liquidity require-
ments or inducing another trader to be distressed.

There exists some empirical evidence that cooperation affects price evolu-
tion and liquidity in financial markets. Cooperation and reputation have been
shown to affect liquidity costs on the floor of the New York Stock Exchange
(NYSE). Battalio, Ellul, and Jennings (2005) document an increase in liquidity
costs in the trading days surrounding a stock’s relocation on the floor of the
exchange.4 They find that brokers who simultaneously relocate with the stock
and continue their long-term cooperation with the specialist obtain a lower cost
of liquidity, which manifests in a smaller bid–ask spread. Cocco, Gomes, and
Martins (2003) detect evidence in the interbank market that banks provide liq-
uidity to each other in times of financial stress. They find that banks establish
lending relationships in this market to provide insurance against the risk of
shortage or excess of funds during the reserve maintenance period.5

We model the effects of cooperation and predation on liquidity as follows.
We start by establishing a predatory stage game in continuous time, and then

2 Brunnermeier and Pedersen (2005) define predatory trading as trading that induces and/or
exploits another investor’s need to change their position. It is important to distinguish predatory
trading from front-running. Front-running is an illegal activity whereby a specialist, acting as an
agent of an investor, trades on his own account in the same direction as his client before he fulfills
his client’s order. In this way, the specialist profits but violates his legal obligation as an agent of
the investor. Predatory activity occurs in the absence of such a legal obligation.

3 On February 2, 2005 the Wall Street Journal reported that this predatory trading plan was
referred to as “Dr. Evil” by traders working at Citicorp.

4 This is an exogenous event that changes long-run relationships between brokers and the spe-
cialist.

5 Other papers in this literature include Berhardt et al. (2005), Desgranges and Foucault (2005),
Reiss and Werner (2004), Ramadorai (2003), Hansch, Naik, and Viswanathan (1999), and Massa
and Simonov (2003).
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model cooperation by embedding it in a repeated game framework. In the stage
game, each trader faces a differential game with other strategic traders, in
which trading has both a temporary and a permanent impact on the price
of the asset. That is, the price of the asset is affected by the current rate of
trading (temporary price impact) and by the total cumulative quantity traded
over time (permanent price impact).6 Because we use a pricing equation that
accounts for the effect of trading pressure on prices (in contrast to the model of
Brunnermeier and Pedersen (2005)), in aggregate the strategic traders suffer
a surplus loss in the presence of predatory trading. This surplus loss motivates
the traders to cooperate and provide liquidity to each other in our repeated
game.7,8

In the equilibrium of our stage game, traders race to market, selling quickly in
the beginning of the period, at an exponentially decreasing rate. Also in equilib-
rium, predators initially race the distressed traders to market, but eventually
fade them and buy back. This racing and fading behavior is well known in the
trading industry and is modeled by Foster and Viswanathan (1996).

We model cooperation by embedding the predatory stage game in a dynamic
game. We first consider an infinitely repeated game in which the magnitude of
the liquidity event is fixed. In this framework, there exists an extremal equi-
librium that is Pareto superior for the traders. We then extend the model to
episodic illiquidity by allowing the exogenous magnitude of the liquidity event
in the repeated game to be stochastic. Given such stochastic liquidity shocks,
we provide predictions as to the magnitude of the liquidity event required to
trigger liquidity crises and we describe how a breakdown in cooperation leads
to price volatility. Finally, we allow for multimarket contact in the stochastic
version of our dynamic game. This increases cooperation across markets, but
leads to contagion of both predation and liquidity crises across markets.9

6 Motivation for partitioning price effects based on permanent and temporary components of
liquidity is given in the body of the paper, but is based on work by Kraus and Stoll (1972), Holthaisen
et al. (1990), Cheng and Madhavan (1997), Huang and Stoll (1997), and Sadka (2005).

7 In the formulation by Brunnermeier and Pedersen, no transaction costs are incurred in the
equilibrium solution and all gains by the predators are exactly offset by losses by distressed traders,
so that there would be no feasible Pareto improvement in a repeated game. There are other sub-
stantial differences between the models. Brunnermeier and Pedersen impose exogenous holding
limits [−x̄, x̄] for traders, whereas we do not make this restriction. Our model involves a stochastic
price process, while in Brunnermeier and Pedersen the asset pricing relationship is determinis-
tic. Finally, note that Brunnermeier and Pedersen’s model predicts price-overshooting, whereas our
model does not. However, this is a consequence of the fact that, in our stage game model, all traders
have an identical time horizon. If we relax this assumption as in Brunnermeier and Pedersen to
allow predators to have a longer horizon, price overshooting also obtains in our model.

8 Attari et al. (2005) also describe predatory trading behavior with a two-period model. They
show that predators may even lend to others that are “financially fragile” because they can obtain
higher profits by trading against them for a longer period of time. Our model is more general in
that it is in an infinite-horizon, multiperiod framework, with each period a continuous-time game.

9 Our mechanism for contagion is different from that of Brunnermeier and Pedersen (2005).
The contagion in Brunnermeier and Pedersen (2005) is caused by a wealth effect. As prices in
the market drop, additional traders are induced into a state of distress and a market-wide sell-off
arises. In contrast, contagion in our model occurs when traders abandon cooperation in a model of
repeated interaction.
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We note a few empirical implications of our model. We show that the need for
liquidity over time needs to be sufficiently symmetric for the traders to cooper-
ate; asymmetric distress probabilities lead to the abandonment of cooperation
in equilibrium. We also show that traders are more likely to cooperate in mar-
kets in which the permanent price impact of trading is high and the temporary
price impact of trading is low. These markets are also those in which the preda-
tory equilibrium strategies are the most aggressive. We would expect liquidity
in these markets to be smooth most of the time and the episodes of illiquidity to
be the most marked. If the degree of asymmetric information associated with
an asset is a good predictor of the permanent price impact of trading, then se-
curities that have concentrated ownership, that have high insider ownership,
or that are from high-growth, research-intensive firms should exhibit this type
of pattern and have the most marked spikes in illiquidity. In contrast, securi-
ties with diffuse ownership of shares from mature (value) firms should exhibit
spikes in illiquidity with lower magnitude. To the extent that higher average
daily trading volume and higher number of outstanding shares are good pre-
dictors of a lower temporary impact of trading, securities with a large number
of outstanding shares that are traded in large volumes should also have more
steady apparent liquidity, but more marked illiquidity episodes. To our knowl-
edge, even though this empirical typology seems natural, securities have not
been grouped into these categories before and studied for their permanent and
transitory illiquidity, which would be required to test the implications of our
model.10

The rest of the paper is organized as follows. Section I introduces the price
equation and sets up the stage game. We derive closed-form solutions for the
trading dynamics and quantify the surplus loss due to competitive trading.
Section II uses the stage game with one predator and one distressed trader as
the basis for a multiperiod game. In Section II.A, we consider an infinitely re-
peated game in which the magnitude of the liquidity shocks is fixed and provide
a model for the relationship between insiders and outsiders in these markets. In
Section II.B, we model episodic illiquidity by allowing the magnitude of the liq-
uidity shocks to be stochastic and we address the contagion of illiquidity across
markets. Section III concludes. Appendix A contains all proofs. The stage-game
solution in Section I is based on the equilibrium over open-loop strategies; in
Appendix B we consider the equilibrium over closed-loop strategies and argue
that the results are not qualitatively different.

I. Trading and Predation

A. Asset Price Model

The economy consists of two types of participants. The first type are strategic
traders, which we index with i = 1, 2, . . . , n. These traders are risk-neutral and

10 Another possible test of our model would be a natural experiment. For example, comparing
the liquidity pattern in the foreign exchange market before and after electronic automation might
reveal the effects of relationships and cooperation on liquidity.
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maximize trading profits. They form a tight oligopoly over order flow in the
financial market. Large traders are usually present in markets as proprietary
trading desks, trading both on their own accounts as well as for others. The
strategic traders observe the order flow and have inside information regard-
ing transient liquidity needs in the market. They attempt to generate profits
through their ability to forecast price moves and affect asset prices.

The second type of players are long-term investors, who form the competitive
fringe. The long-term investors usually trade in the interest of mutual funds
or private clients and exhibit less aggressive trading strategies. Long-term in-
vestors are more likely to follow a buy and hold strategy, limit the number of
transactions they undertake, and avoid taking over-leveraged positions. They
trade according to fundamentals. The primary difference between the two types
of traders is that the long-term investors are not aware of transient liquidity
needs in the economy.

There exists a risk-free asset and a risky asset, traded in continuous time.
The aggregate supply S > 0 of the risky asset at any time t is divided between
the strategic investors’ holdings Xt and the long-term investors’ holdings Zt
such that S = Xt + Zt. The return on the risky asset is stochastic. The yield on
the risk-free asset is zero.

The asset is traded at the price

Pt = Ut + γ X t + λYt , (1)

where

dXt = Yt dt, (2)

and Ut is the stochastic process dUt = σ (t, Ut) dBt, with Bt some one-
dimensional Brownian motion on (�, F , P ).

A similar pricing relationship was previously derived by Vayanos (1998), and
also by Gennotte and Kyle (1991) who show that it arises from the equilibrium
strategies between a market maker and an informed trader when the position of
the noise traders follows a smoothed Brownian motion. Pritsker (2004) obtains
a similar relationship for the price impact of large trades when institutional
investors transact in the market. Huberman and Stanzl (2004b) find a similar
relationship in discrete time.11,12

The pricing equation has three parts. The first term, Ut, represents the ex-
pected value of future dividends and is modeled as a martingale stochastic

11 Directly linking trading pressure and price distinguishes our model from Brunnermeier and
Pedersen (2005), where transaction costs are modeled via an exogenous parameter A (the maximum
trading rate at which transaction costs are avoided), which does not directly affect prices in the
market. This results in there being no surplus to be gained from cooperation.

12 Further motivation for our use of this pricing relationship are the empirical and theoretical
studies that link trading pressure and asset prices (Keim and Madhavan (1996), Kaul, Mehrotra,
and Morck (2000), Holthausen, et al. (1990), Chan and Lakonishok (1995), Bertsimas and Lo (1998),
Fedyk (2001), DeMarzo and Uroevic (2000), Almgren and Chriss (1999), and Huberman and Stanzl
(2004a)).
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diffusion process. The diffusion does not include a drift term, which is justified
by the short-term nature of the events modeled.13

The second and third terms partition the price impact of trading into perma-
nent and temporary components. Such a decomposition is justified on theoret-
ical grounds, as we note above, and seems reasonable in light of the empirical
work on block trades by Kraus and Stoll (1972), Holthausen, Leftwich, and
Mayers (1990), and Cheng and Madhavan (1997), who find large permanent
and temporary effects for block trades on the NYSE. Cheng and Madhavan
(1997) estimate the temporary and permanent price impacts of block trades ex-
ceeding 10,000 shares in the “downstairs” and “upstairs” markets at the NYSE.
The permanent price impact, measured from the price at the trade immediately
prior to the block trade to the price of the 20th trade after the block trade, is
−6.66 in the downstairs market and −7.59 in the upstairs market, in basis
points of the logarithmic return averaged over blocks of all sizes. The tempo-
rary price impact, measured from the price at the 20th trade after the block
trade to the price at which the block was traded, is −5.28 downstairs and −5.81
upstairs, again in basis points of the logarithmic return averaged over blocks of
all sizes. Cheng and Madhavan show that both the permanent and temporary
price impact of trading increase in magnitude with the size of the traded block.
For instance, the permanent price impact in the downstairs market is −5.63 for
blocks of size 10 to 20 (thousands), −8.77 for blocks of size 20 to 50, and −15.09
for blocks over 50. Importantly, Sadka (2005) finds that the correlation between
the temporary component and the permanent component is around 0.28, which
suggests that there is significant variation in the ratio of the temporary price
impact to the permanent price impact.14

In the second term, X t = ∑n
i=1 X i

t is the inventory variable, which measures
the aggregate amount of the asset that the strategic traders hold at time t. As
Xt increases, the supply available to the long-term investors decreases and the
price at which they can access the asset increases. The parameter γ measures
the permanent liquidity effects of trading, that is the change in the price of
the asset that is independent of the rate at which the asset is traded. Note
that the level of asymmetric information in an asset is likely to be a major
determinant of γ , as demand for the asset will then play a more important role
in price formation. For instance, we expect an AAA-rated corporate bond to have
lower asymmetric information associated with it than a B-rated bond. In our

13 In a model with no discounting, Huberman and Stanzl (2004a) show that the presence of a drift
term is inconsistent with no arbitrage. This result can be extended to the case with discounting. For
no arbitrage to hold, the difference between the drift coefficient and the continuous-time discount
factor must be zero. For the multiperiod game that we discuss later, the assumption is that T is
relatively small, that is, the distress and predation events develop over short periods of time, and
the discounting within each period is not significant. The period-to-period discount factor is then
also close to one. Since each period is short, the multistage game consists of many short periods,
where the probabilities of a player being distressed in any one of those periods are small, so that
the period-to-period discount factor is significant to the problem.

14 Huang and Stoll (1997) show large variation in the ratio γ

λ
in Table 2 in their paper. For the

stocks considered, the ratio γ

λ
varies from 0.02 to 0.22, which seems especially significant given the

sample of large liquid stocks that they consider.
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model, the AAA-rated bond should then have a lower γ than the B-rated bond.
Likewise, an asset with concentrated ownership should have a higher level of
asymmetric information (and therefore a higher γ ) than an asset with a more
dispersed ownership structure. For an asset with more asymmetric information,
the market will more strongly adjust the asset price based on the net change
in the supply of the asset.

The third term, Yt = ∑n
i=1 Y i

t , measures the instantaneous, reversible price
pressure that results from trading. The faster the traders sell, the lower a price
they will realize. This leads to surplus loss effects, which we discuss in the
following subsections. The price impact parameter λ measures the temporary,
reversible asset price change that occurs during trading. Trading volume and
shares outstanding are likely to play a role in the level of λ.

B. Stage Game: Trading Dynamics

Our stage game is one of complete information. Many assets that are prone
to illiquidity are traded in nonanonymous markets in which a few large dealers
dominate order flow.15 Furthermore, roughly half of the trading volume at the
NYSE is traded in blocks over 10,000 shares (Seppi (1990)) and much of that
occurs in the upstairs market, which is nonanonymous. As a result, the liquidity
needs of large traders are usually observed quickly by others.

For an example of a context in which this game structure is a natural choice,
consider a thinly traded corporate bond issue that is traded by a small number of
broker-dealers. Trading occurs either by direct negotiation over the phone, or by
“sunshine trading” in which a mini-auction is held. The players are well known
to each other because each deals repeatedly with the others. Their trading
habits and strategies are common knowledge.16 When one trader needs to trade
a large block of shares of an asset, this need is observed by others in the market
and the optimal trading strategies solve a game of complete information.

In the stage game, strategic traders are either distressed or they are preda-
tors. A liquidity event occurs at time t = 0, whereby the distressed traders are
required to buy or sell a large block of the asset �x in a short time horizon T
(say, by the end of the trading day). Forced liquidation usually arises because of
the need to offset another cash-constrained position such as an overleveraged
position, or it occurs as a result of a risk management maneuver. The predators
are informed of the trading requirement of the distressed traders and compete
strategically in the market to exploit the price impact of the distressed traders’
selling. For clarity of exposition, we assume that the opportunistic traders must
return to their original positions in the asset by the end of the trading period,

15 Duffie, Garleanu, and Pedersen (2005) also study the factors that affect liquidity in nonanony-
mous markets.

16 A particularly clear example of this is the mortgage market developed by Salomon Brothers.
Once this market was established and profitable, many of Salomon’s mortgage traders were hired
by other investment banks to run their mortgage desks. As a consequence, the trading habits of all
of the desks were especially well known to each other.
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and that the distressed traders are informed of this requirement.17 Further-
more, we assume that, except for their trading targets, all strategic traders
are identical. That is, the only difference between the two types of strategic
traders is that the trading target is �x for the distressed traders, and zero for
the predatory traders.

At the start of the stage game, every trader chooses a trading schedule Yi
t

over the period [0, T ] to maximize their own expected value, assuming the other
traders will do likewise. Subject to their respective initial and terminal holding
constraints, they solve the dynamic program

maximize
Y i

t ∈Y
E

[∫ T

0
−PtY i

t dt

]

subject to X i
0 = x0i

X i
T = xTi,

(3)

where the maximization is over Yi
t , t ∈ [0, T], with the strategy space Y re-

stricted so that, for each i, Yi
t is continuous and admissible, that is, it satisfies

the integrability condition

E

[∫ T

0
−PtY i

t dt

]
< ∞. (4)

Note that Pt depends on Yi
t and on the trading strategies of other traders as in

equation (1). The restriction Yi
t ∈ L2, (i.e.,

∫ T
0 (Y i

t )2 < ∞), among others, ensures
admissibility. It follows that the position Xi

t is a differentiable function with
continuous derivatives.18,19

We restrict our analysis in the paper to the open-loop Nash equilibrium solu-
tions to this differential game.20 In equilibrium, each trader chooses ex ante a

17 A variation on this model would be to allow the opportunistic traders to trade over a longer time
period than the distressed traders. The solution for such a model is similar. However, the predatory
trader will now choose what position to have by the end of the distressed seller’s deadline. The choice
of this position is made by maximizing the expected value from trading over the distressed seller’s
period, plus the expected value from selling the position at the end of that period at a constant rate
over the additional time. (See also Footnote 7.)

18 Our admissibility restriction is similar in spirit to Back and Baruch (2004). It restricts trader
i’s strategy given the price process, hence it depends on the strategies of other traders. As noted,
it is easy to show that the restriction Yi

t ∈ L2 suffices to ensure admissibility, so that there are
standard restrictions that ensure admissibility.

19 The single-trader version of this problem is related to Huberman and Stanzl (2004a,b), Alm-
gren and Chriss (1999), and Bertsimas and Lo (1998).

20 In Appendix B we analyze closed-loop strategies, where players take into account the other
players’ response functions and are able to change their trading schedules part-way through the
game. From an asymptotic approximation (and numerical experiments), we find that the solution to
the closed-loop differential game is qualitatively similar to that of the open-loop differential game,
except that the welfare loss in the closed loop game is higher. Hence, the incentives for cooperation
are stronger in the closed-loop solution, which would make the players more likely to cooperate in
the repeated-game analysis of Section II.
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time-dependent trading strategy that is the best response to the other traders’
expected actions. As we note in Appendix A, the restriction to smooth function-
als that are admissible and the concavity of the objective function in Xi

t and Yi
t

ensures that the problem is well posed.21

The equilibrium solution of the open-loop problem is weakly time consistent.
That is, the solution to the subproblem over the interval [t1, T] (with initial
conditions as given by the solution of the [0, T]-problem at time t1) is the trun-
cation of the [0, T]-solution over that sub-interval.22 Along the equilibrium
path, a trader follows a continuation strategy that maximizes his utility given
his equilibrium play until that point.23

The following result outlines the unique Nash equilibrium solution for the
traders. This formulation will serve as a basis for deriving the equilibrium
strategies when several distressed traders are present without opportunism
and when there are both opportunistic and distressed traders present in the
economy. It will also allow for analysis of trader surplus, which motivates co-
operation between traders in the repeated game.

RESULT 1 (general solution): Consider N traders that choose a time-dependent
trading rate Yi

t to solve the optimization problem in Equation (3), subject to
the asset price given by equation (1). The unique open-loop Nash equilibrium
(among the class of continuous admissible functionals) in this game is for trader
i to trade according to

Y i
t = a e− n−1

n+1
γ

λ
t + bi e

γ

λ
t , (5)

with a ∈ R, and bi ∈ R, i = 1, . . . , n, such that
∑n

i=1 bi = 0. The coefficients a
and bi are uniquely determined from the boundary conditions as follows

a = n − 1
n + 1

γ

λ

(
1 − e− n−1

n+1
γ

λ
T
)−1

n∑
i=1

�xi

n

bi = γ

λ

(
e

γ

λ
T − 1

)−1




�xi −

n∑
j=1

�x j

n


 , (6)

where �xi = xTi − x0i.

21 Our approach to existence is similar to Huberman and Stanzl (2004a), who consider a related
problem in continuous time for a single trader. As in their paper, we restrict ourselves to the class of
smooth differentiable strategies. An alternative approach is to ensure smoothness by defining the
solution to the continuous-time problem as the limit of the solutions to a sequence of discrete-time
problems, which is the approach we use in the analysis of the closed-loop version of the problem in
Appendix B.

22 See Theorem 6.12 in Basar and Olsder (1999) and the related discussion.
23 However, the open-loop strategy is not strongly time consistent or subgame perfect. The closed-

loop solution discussed in Appendix B is strongly time consistent.
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The equilibrium trading strategy in equation (5) consists of two parts. For
small t, the first term dominates the trading strategy and for larger t within
the interval T, the second term dominates. The first term, a e− n−1

n+1
γ

λ
t , describes

how fast traders race to the market during a sell-off or a buying frenzy. The
second term, bie

γ

λ
t , describes the magnitude of fading by each trader. Fading

refers to traders reversing the direction in which they are trading and, for the
cases we consider in our stage game, only occurs when opportunistic traders are
present. For example, consider the case in which a distressed trader needs to sell
a block of shares of an asset and predatory traders are present in the market.
The first term describes the rate at which they all trade when they initially race
each other to the market, and the second term describes the trading dynamic
when the predators buy back.

Note that the constant a in equation (6) is a function of the average trading
target over all traders. All traders race to the market in similar fashion, based
on the common knowledge of their overall trading target. Toward the end of the
period, traders fade based on their particular trading targets. The constants bi
are a function of how each trader’s trading target is different from the average.
A trader that is distressed, in the sense that he has a higher-than-average
trading target, toward the end of the period will trade in the same direction as
the racing. A trader that is a predator, in the sense that she has a smaller-than-
average trading target, will fade in the opposite direction, that is, reverse the
direction in which she is trading.

To develop more intuition regarding Result 1, we evaluate equation (5) for
special cases, which we will use when we consider the games of repeated inter-
action in Section II.

CASE 1 (symmetric distressed traders): First, consider the optimal trading pol-
icy when a trader has monopoly power and buys or sells in the absence of other
strategic traders. For n = 1, the optimal trading policy (5) for a single trader is
to trade at a constant rate, Yt = a = �x

T , where �x is the block of shares that
the trader needs to buy or sell. This result is consistent with Bertsimas and Lo
(1998) and Huberman and Stanzl (2004b).

Now, consider n symmetric traders, each needing to sell an identical amount
of shares �x

n . From equation (5), the unique equilibrium smooth trading strategy
is

Y i
t = ae− n−1

n+1
γ

λ
t , i = 1, . . . , n, (7)

where a is as in equation (6) with
∑n

i=1 �xi = �x. Figure 1 plots these trading
policies with �x = 1, T = 1, γ = 10, and λ = 1. If the permanent price impact
of trading is lower (small γ ), trading will occur comparatively later. If the tem-
porary price impact of trading is smaller (small λ), trading will occur compar-
atively earlier. For n = 1 we obtain the constant selling rate (solid horizontal
line). If there are more traders, everybody will trade earlier. Note that the rate
of trading goes to e− γ

λ
t as n → ∞ (dotted line). That is, there is an upper bound
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Figure 1. Trading rate (Yt) for multiple traders with identical targets (solid for n = 1,
2, 3, 4, 5, dashed for n = ∞) during a market sell-off. Competition among traders leads to
a race to trade. Traders sell at a decreasing exponential rate. For n = 1 we obtain the constant
selling rate (solid horizontal line). If there are more traders, everybody will trade earlier. Note
that there is an upper bound on how fast traders will sell their position (Yt → e− γ

λ t as n → ∞),
regardless of how many traders are in the race (dotted line). The parameters for this example are
�x = 1, T = 1, γ = 10, and λ = 1.

on how fast traders will sell their position, regardless of how many traders are
in the race. Note that the shape of the curve depends on γ and on λ only through
the ratio γ

λ
. However, the scale of the γ and λ parameters matters in relation

to Ut. For instance, the expected long-term fractional loss in the value of the
asset is proportional to γ /Ut.

Figure 2 plots the corresponding price process (for a constant Ut = 50). For a
single trader, the price changes linearly over the trading period. By trading at
a constant rate, the single trader is able to “walk down the demand curve” and
not incur a loss in surplus due to excessive short-term price pressure from the
trading intensity (straight solid line). For a large number of traders, the price
function over t ∈ [0, T] quickly approaches a constant value. The information
regarding the trader’s target position in the asset quickly becomes incorporated
in the asset price (dotted line). There is a surplus loss to the strategic traders as
trading pressure depresses prices quickly. We quantify these surplus changes
in the next subsection.

CASE 2 (distressed trader and predatory trader): We now set up and analyze
the two-player predatory stage game, which forms the basis for the games in
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Figure 2. Expected price for multiple traders with identical targets (solid for n = 1, 2,
3, 4, 5, dashed for n = ∞). When n = 1, trading occurs at a constant rate (straight solid line).
When there are a large number of traders (n large), trading pressure depresses prices quickly
(dotted line). The parameters for this example are �x = 1, T = 1, γ = 10, and λ = 1, with constant
Ut = 50.

Section II. Let there be one distressed and one opportunistic trader. Each trader
chooses a trading schedule (Yd

t and Yp
t ) over the period [0, T] to maximize their

own expected value, assuming the other trader will do likewise. From Result 1,
the unique equilibrium smooth trading policies are

Y d
t = a e− 1

3
γ

λ
t + be

γ

λ
t

Y p
t = a e− 1

3
γ

λ
t − be

γ

λ
t , (8)

where

a = γ

6λ

(
1 − e− 1

3
γ

λ
T
)−1

�x, b = γ

2λ

(
e

γ

λ
T − 1

)−1
�x. (9)

The shape of the trading strategy depends on the parameters of the market.
Figure 3 gives an example, with �x = 1, T = 1, γ = 10, and λ = 1. The strategy
involves the opportunistic trader initially racing the distressed trader to the
market in an exponential fashion, and then fading the distressed trader toward
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Figure 3. One trader with a position target (solid) and one opportunistic trader
(dashed). The opportunistic trader initially races the distressed trader to the market in a sell-
off. Then, toward the end of the period, the opportunistic trader reverses position and fades the
distressed trader. The parameters for this example are �x = 1, T = 1, γ = 10, and λ = 0.1.

the end of the period, also exponentially. If the first trader needs to sell, that is,
�x < 0, the predatory trader sells short initially and buys back in later periods
to cover his position. If the distressed trader is required to buy a block of the
asset, the predator follows the opposite strategy. In general, we see that the
presence of the predator will lead the distressed trader to increase his trading
volume at the beginning and at the end of the trading period.

C. Surplus Effects

Based on the trading dynamics in Section I.B, we quantify the surplus
changes that occur when traders race to market and when predatory trading
occurs. The surplus values that we derive will be used in the following sections.

First, consider the expected value for a single trader with monopoly power.
Given the price (1) and the optimal trading rate Yt = �x

T , the expected value
for the single trader is given by

V1 = −U0 �x −
(

γ

2
+ λ

T

)
�x2. (10)

This is the trader’s first best when no other competing traders are informed
of the trader’s trading requirement �x. The costs due to short-term trading
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pressure are minimized. When other players trade strategically at the same
time, the value that the trader can derive is strictly lower than V1. We will
also see that when multiple traders compete in a sell-off or if there is predatory
trading, the aggregate surplus available to all traders is lower.

Define Vn as the total expected value for the strategic traders when n traders
play this game and define �Vn as the change in total surplus that occurs com-
pared to the expected value when all participants trade at a constant rate (V1).
The following result provides expressions for Vn and �Vn, and shows that the
loss in surplus is increasing in the number of traders. This result lays some
of the groundwork for the surplus results for the case in which there is one
distressed and one predatory trader (i.e., for n = 2), and is also of interest on
its own for the monotonicities.

RESULT 2 (expected total surplus and loss for multiple traders): The total ex-
pected value for n traders with a combined trading target �x is

Vn = −U0 �x − γ

2

(
1 + n − 1

n + 1
· e

n−1
n+1

γ

λ
T + 1

e
n−1
n+1

γ

λ
T − 1

)
�x2. (11)

The expected loss in total surplus from competition is

�Vn = V1 − Vn = γ

(
1
2

· n − 1
n + 1

· e
n−1
n+1

γ

λ
T + 1

e
n−1
n+1

γ

λ
T − 1

− 1
γ

λ
T

)
�x2. (12)

�Vn is positive, monotonically increasing in γ , T, and n and monotonically
decreasing in λ.

Now we apply Result 2 to the two-trader case and derive a surplus result
that we use in Section II. Define V2 as the total expected value for the strategic
traders when two traders play this game, and define Vd and Vp as the expected
values to the distressed trader and to the opportunistic trader (as defined in
Section I.B). Likewise, define �V2 as the change in surplus that occurs com-
pared to the expected value V1 that is obtained when the participants trade at
a constant rate.

RESULT 3 (expected total surplus and loss for two traders): The total expected
value for the distressed trader and the predatory trader is

V2 = Vd + Vp = −U0 �x − γ

3
· 2e

1
3

γ

λ
T − 1

e
1
3

γ

λ
T − 1

�x2. (13)
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The expected value is decomposed as

Vd = −U0 �x − γ

6
5e

γ

λ
T + e

2
3

γ

λ
T + e

1
3

γ

λ
T − 1

e
γ

λ
T − 1

�x2,

Vp = γ

6
· e

2
3

γ

λ
T − 1

e
2
3

γ

λ
T + e

1
3

γ

λ
T + 1

�x2. (14)

The expected loss due to predation for the distressed trader is

�Vd = V1 − Vd = γ

(
1
6

· 2e
γ

λ
T + e

2
3

γ

λ
T + e

1
3

γ

λ
T + 2

e
γ

λ
T − 1

− 1
γ

λ
T

)
�x2, (15)

and the expected total surplus loss from predation for the strategic traders is

�V2 = V1 − V2 = γ

(
1
6

· e
1
3

γ

λ
T + 1

e
1
3

γ

λ
T − 1

− 1
γ

λ
T

)
�x2. (16)

Vp is monotonically increasing in γ and in T, and monotonically decreasing in
λ.

The ratio of gains to the predator to the losses to the distressed trader, Vp

�Vd
,

is monotonically decreasing in γ and T, monotonically increasing in λ, and
bounded by 4

5 >
Vp

�Vd
> 1

2 . Note that it follows from Result 2 that �V2 is positive,
monotonically increasing in γ and T, and monotonically decreasing in λ. From
the monotonicity of Vp it also follows that �Vd = �V2 + Vp is monotonic.

Proof : See Appendix A. Q.E.D.

From the solutions for the rate of trading, we can see that a larger γ

λ
ratio

(more permanent price impact and less temporary price impact) creates condi-
tions for more aggressive predation, in the sense that trading will be relatively
more concentrated at the beginning and at the end of the period. Racing is
faster and fading occurs closer to the end of the trading period.

Since Vp

�Vd
is bounded in the interval [ 1

2 , 4
5 ], the losses to the distressed trader

are strictly higher than the gains by the predator.24 Even though the monotonic-
ity of Vp implies that market conditions that lead to more aggressive predation
(larger γ , lower λ, or both) will lead to more gains from predation, since Vp

�Vd

decreases in γ and increases in λ, the losses to the distressed trader grow faster
than the gains to the predator. In this one-shot stage game, this represents a
significant surplus loss to the traders as a whole.25 In a dynamic setting, which
we model in the next section, if both traders have a possible liquidity need

24 Note that these bounds are tight, in that they can be approximated arbitrarily close under
some combination of valid parameters.

25 In our stage game, we do not allow for ex post renegotiation. Surplus losses are common in
many models in noncooperative game theory (i.e., Prisoner’s dilemma and centipede game) and
motivate cooperation in repeated play.
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in each period, there exists a potential for Pareto improvement if the traders
can cooperate. As we will see, the ratio γ

λ
is the key determinant of whether

cooperation is possible.
Finally, for some insight into the magnitude of the available Pareto improve-

ment, consider the case in which λ � γ T. Under this condition, predation is
most aggressive, that is, the racing and the fading are fastest as a consequence
of the low transaction costs. Taking the limit λ → 0 (which, by change of units,
is immediately seen to be equivalent to T → ∞), L’Hôpital’s rule yields for
the overall surplus loss, the distressed trader’s losses from predation, and the
predator’s gains:

�V2 → γ

6
�x2,

�Vd → γ

3
�x2,

Vp → γ

6
�x2.

(17)

In the limit, under market conditions that favor the most aggressive predation,
the predator gains (Vp), half of what the distressed trader loses (�Vd). This
represents the lower bound for Vp

�Vd
.

II. Cooperation and Liquidity

To illustrate the incentives for cooperation in financial markets and the im-
plications for market liquidity, we consider a dynamic game in which there are
two strategic traders as well as a large number of long-term investors. Each
player faces a common discount factor δ and the common asset price deter-
minants Ut, γ , and λ. At the beginning of each stage, nature moves first and
assigns a type to each of the traders. With probability pi, i = 1, 2, each trader
must liquidate a large position of size �x. With probability 1 − pi, each trader
may act as a predator if their competitor needs liquidity. In each round, the
traders have perfect information about each other’s type.26

We assume that the distress probabilities p1 and p2 are mutually indepen-
dent. In each time period one of the following four events occurs: neither of the
two players is distressed, with probability (1 − p1)(1 − p2); the second player
is distressed but the first is not, with probability (1 − p1)p2; the first player is
distressed but the second is not, with probability p1(1 − p2); both players are
distressed, with probability p1p2. The four probabilities sum to one. Coopera-
tion is possible when either there exists one predator and one distressed trader

26 In models of implicit collusion under imperfect information (Green and Porter (1984), Abreu,
Pearce, and Stacchetti (1986)), players never deviate in equilibrium, but enter punishment phases
because of exogenous price changes. Our game is one of complete information, where deviations
cannot arise from such exogenous factors. This allows for a simpler model that captures the key
issues of interest, namely how apparent liquidity arises from incentives to cooperate.
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(with probability p1 + p2 − 2p1p2), or when both players are distressed (with
probability p1p2). If only one of the players is distressed and needs to liquidate
a position, cooperation involves the other refraining from engaging in preda-
tory trading. If both traders are distressed, cooperation involves both traders
selling at a constant rate and refraining from racing each other to the market
for their own gain.

Cooperation enables the players to quickly sell large blocks of shares for
the price that would be obtained by selling them smoothly over time. That is,
while cooperation is sustained, the distressed trader is allowed to walk down
the demand curve, rather than having the information regarding the trading
target quickly incorporated into the asset price ahead of most of their trading.
In the sense that large blocks of shares can be moved for a better price, the
market appears more liquid. Cooperation also avoids the volatility and potential
instability from the large trading volume peaks that are associated with the
racing and fading.

In what follows, we consider two versions of the model. As a building block, we
develop a benchmark model in which the magnitude of the shock �x is constant.
The two traders participate in an infinitely repeated game and the punishment
strategy that they use is a grim-trigger strategy (Friedman (1971)). We deter-
mine which markets are prone to breakdowns in cooperation and analyze the
effect of distress probabilities on the ability to support cooperation. We show
that the ability to cooperate in markets has market structure implications.

Subsequently, we build upon the benchmark model and allow �x to be a
stochastic random variable. The traders choose optimal strategies by taking
expectations over �x and the distress probabilities that they face. In the equi-
librium of this dynamic game, the traders implicitly agree not to punish each
other for predating when the stakes are high. That is, they use a punishment
strategy along the lines of Rotemberg and Saloner (1986). Episodically, cooper-
ation breaks down leading to episodic illiquidity, which is short-lived. Finally,
we consider the effect of multimarket contact and the contagion of illiquidity
in the stochastic model.

A. Fixed Liquidity Needs and Cooperation

Let the two strategic traders play an infinitely repeated game in which the
magnitude of the liquidity shock �x is constant. The punishment strategy con-
sidered is a trigger strategy in the spirit of Friedman (1971) and Dutta and
Madhavan (1997). That is, for cooperation to occur in equilibrium for a given
discount factor δ, the expected value of a perpetuity of cooperation must exceed
that of a one-time deviation plus a perpetuity of noncooperation. By the Folk
theorem, a convex set of subgame-perfect Nash equilibria may exist in which
intermediate levels of cooperation occur. For clarity of exposition, we focus on
the extremal equilibrium that allows for the maximal cooperation.

The goal here is to predict when traders will abandon a cooperative effort,
thereby leading to a reduction of the apparent liquidity in the market. We per-
form a comparative statics analysis by comparing the discount factor δ required
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Table I
Expected Values from Strategic Trading

Listed are the expected values that traders gain or lose when a sell-off occurs in the market. If only
one trader is present, they sell a block of shares �x in the time interval [0, T] and gain the value
V1. When a predator is present they will earn less and the loss they incur is �Vd = V1 − Vd, where
Vd is the value they gain when they trade against the predator. The predator makes a profit of Vp
and the aggregate surplus to the predator and distressed trader is V2 = Vd + Vp. We show that the
change in overall surplus, �V2, is always negative. The expressions in the right-hand column of
the table are derived in the paper. U0 is the expected value of future dividends, γ measures the
permanent impact of trading, and λ measures the temporary impact of trading.

Surplus to distressed trader, V1 −U0 �x −
(

1
2 + 1

γ
λ T

)
γ �x2

no predation

Surplus to distressed trader
during predation Vd −U0 �x − 1
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λ
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− 1
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λ T

)
γ �x2

for cooperation to be possible under different scenarios of the other problem pa-
rameters. Given any particular punishment scheme, such as the more compli-
cated penal codes in Abreu (1988), a critical δ can be derived. For this analysis,
we do not allow the traders to change punishment schemes to achieve cooper-
ation. We focus on trigger strategies because they lead to the same economic
results while maintaining clarity of the model.

The following result describes the extremal equilibrium of our repeated game
with fixed liquidity needs (�x) in each period, using a trigger strategy. Table I
presents the expected values derived in Section I.

RESULT 4 (repeated game with two symmetric traders): Define the expected
values as in Section I. When a trigger strategy (punishment strategy) is used,
the discount factor required to support collusion is

δ ≥ δmin = max {δ1, δ2} , (18)

where the δi are the lowest discount factors for which each trader does not have
an incentive to predate given the opportunity to do so (and given that the same
is true for the other trader), which are
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δ1 = Vp

p1(1 − p2)�Vd + 2p1 p2�V2 + (1 − (1 − p1)p2)Vp
,

δ2 = Vp

(1 − p1)p2�Vd + 2p1 p2�V2 + (1 − p1(1 − p2))Vp
. (19)

The δ1 and δ2 bounds on the discount factor (and therefore δmin) are monotoni-
cally increasing in λ and T, and monotonically decreasing in γ .

Result 4 predicts that cooperation is more likely for assets with a higher per-
manent price impact of trading, since the minimum discount factor δ for which
cooperation can be supported is monotonically decreasing in γ . In Section I.C,
we show that the surplus loss to predatory trading is monotonically increasing
in γ . Since with higher γ there exists a higher Pareto improvement available,
it becomes more desirable for the traders to maintain cooperation. In contrast,
in markets with a high temporary impact of trading λ, we would expect a lower
level of cooperation. Since the Pareto improvement available monotonically de-
creases in λ, the level of cooperation should be lower for these markets.

Given Result 4, we can focus on the ratio γ

λ
to predict whether there will

exist more or less aggressive cooperation. For large γ

λ
, we expect cooperation

to dominate predation. For small γ

λ
, we expect predation to be more prevalent.

The ratio γ

λ
impacts the liquidity available in asset markets. In Section II.B,

we show that markets with a large γ

λ
have relatively smooth liquidity most of

the time, but have the most marked spikes of illiquidity. These results arise
because the monotonicities in Result 4 hold in the stochastic model.

Given Result 4, we can also analyze how δ relates to the probabilities of
distress, that is, how the probabilities of each trader having future liquidity
needs affects the traders’ ability to cooperate. We will see that it is easier to
support cooperation when the probabilities of distress are higher and more
symmetric.

Consider the example in Figure 4. The figure plots the minimum δ for which
cooperation is feasible as a function of γ . The other parameters are �x = 1, U0 =
10, T = 10, and λ = 1. The base case is the solid line, in which p1 = 0.5 and
p2 = 0.5. For all values of γ , the δ required for cooperation is less than one, which
means that if the strategic traders are sufficiently patient they can cooperate
in any market. Now consider the case in which p1 = 0.1 and p2 = 0.1. It is
still possible to cooperate in any market, but the required δ is higher. As the
probability of distress decreases, a player that is not distressed and has the
opportunity to predate will likely have to wait longer until the next event in
which they might benefit from cooperation from the other player. For the value
of future benefits from cooperation to be sufficient for the player not to have
an incentive to predate, the future needs to be less discounted (i.e., higher δ).
Finally, consider the case where p1 = 0.5 and p2 = 0.3. In this case, it is not
possible for the traders to cooperate in markets with low γ . Since we must
have δ ∈ [0, 1], we can find a bound on γ /λ below which cooperation should
never be observed. Symmetry in distress probabilities between the traders is an
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Figure 4. Minimum δ for which cooperation is feasible as a function of γ, with loga-
rithmic scale on the γ-axis. Three different cases of the distress probabilities of each trader are
plotted (the probabilities are assumed independent). It is always possible to support cooperation
when p1 = p2 = 0.5 and when p1 = p2 = 0.1, but it is harder when the distress probabilities are
lower. When the permanent price impact parameter γ is low it is impossible support cooperation
when the distress probabilities are asymmetric (p1 = 0.5 and p2 = 0.3). The other parameters are
�x = 1, U0 = 10, T = 10, and λ = 1.

important factor for cooperation. In markets with a low γ /λ, even a small degree
of asymmetry will be enough to cause the traders to abandon a cooperative
relationship.

These conclusions are supported analytically as follows. Without loss of
generality, assume δ1 = δmin (that is, p1 < p2). Equation (19) can be rewritten
as

δ1 = Vp

p2[p1�V2 − Vp] + p1�Vd + Vp
. (20)

From equation (20) we can see that δ1 is monotonically increasing in p2 (since we
can establish that Vp ≥ �V2 from Vp/�Vd > 1/2 in Result 3 and �Vd = �V2 +
Vp). A larger probability of distress for the larger trader makes cooperation by
the smaller trader more difficult (cooperation is possible only under a narrower
range of market conditions). We can also rewrite equation (19) as
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δ1 = Vp

p1[(1 − p2)�Vd + 2p2�V2 + p2Vp] + (1 − p2)Vp
, (21)

from which we see that δ1 is monotonically decreasing in p1. A larger probability
of distress for the smaller trader makes cooperation easier (possible under a
wider range of market conditions).

Using Result 4 it is possible to place bounds on how symmetric the distress
probabilities must be in order to support cooperation. Consider, for example,
the case in which the traders are infinitely patient (δ = 1) and, without loss of
generality, p1 < p2. To support cooperation it must be that

p1 ≥ p2
Vp

�Vd
− p1 p2

�V2

�Vd
. (22)

Evaluating equation (22) under extreme market conditions (γ /λ → 0 and
γ /λ → ∞) allows us to derive the relative values of the distress probabilities for
which cooperation is possible.27 Taking the limits above, equation (22) becomes

p1 ≥ 4
5

p2 − 1
5

p1 p2 and p1 ≥ 1
2

p2 − 1
2

p1 p2. (23)

Another useful relation follows from the case in which distress events are in-
frequent (p1, p2 � 1). The probably of both players being simultaneously dis-
tressed is then negligible. The size of the smaller player relative to larger player
is then bounded by

p1

p2
≥ Vp

�Vd
. (24)

In the limit cases above (γ /λ → 0 and γ /λ → ∞), this is

p1

p2
≥ 4

5
and

p1

p2
≥ 1

2
. (25)

As we discuss above, the traders’ distress probabilities need to be sufficiently
symmetric for cooperation to be possible. Equation (25) provides some insight
on the required level of symmetry.

The requirement for symmetry in distress probabilities has implications for
market structure. Strategic traders often trade on behalf of external clients
who use these markets. For example, proprietary trading desks trade for both
their clients and on their own account. If the probability of needing to trade
large blocks in a short time period is linked to the market share of external
clients that a trader serves, the model predicts that active traders may have
an incentive to share the market with their competition. If a duopoly exists
(when a monopoly is not possible), it may be to the benefit of a large trader to
allow a smaller trader to grow in size so that a Pareto superior outcome for the

27 The limits γ

λ
→ 0 and γ

λ
→ ∞ are defined as follows. The limit γ

λ
→ 0 is achieved by letting

γ → 0, λ → ∞, or both. The limit γ

λ
→ ∞ is achieved analogously.
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strategic traders can be achieved. This incentive to share the market will need
to be weighed against the benefits of having more business for oneself. However,
should the surplus from cooperation be lost, the value of being an insider will
be eroded, and with it the ability to extract rents from external clients.

Consider the following scenario in which there exist two strategic traders and
a representative outsider who seeks to trade a block of an asset. The strategic
traders have two alternatives when an outsider needs to trade. They may ini-
tiate a predatory strategy, racing and fading the external player to the market
and earning a profit by affecting the price of the asset. Alternatively, the out-
sider may become a client of the traders so that the traders may exact rents for
use of their services (these rents may arise in the form of a bid–ask spread).
The fact that there exists a cooperative outcome in this market between the
insiders provides a means by which a relatively stable, albeit widened, bid–ask
spread may exist, and we do not necessarily observe price volatility when a
nonmember needs liquidity. The amount of the surplus available between the
traders and the client is �Vd, since the outsider is indifferent between receiv-
ing Vd, and paying �Vd in order to receive V1 when using the services of the
strategic traders.28

The external client uses each trader with probabilities p1 and p2. Equa-
tion (22) implies that the relative market shares of the traders should be rea-
sonably symmetric to support cooperation. Consider the example in Figure 5 in
which the minimum δ necessary to support cooperation is plotted as a function of
p1. Two ranges of scenarios are illustrated: p1 = p2 (bold line) and p1 + p2 = 0.5
(dotted line). When the traders’ distress probabilities (market shares) are sym-
metric, cooperation is always possible as long as traders are sufficiently patient.
However, when the market shares are asymmetric and p1 < 0.18 (36% market
share) or p1 > 0.32 (64% market share), cooperation is not possible. If one trader
has a market share larger than 64%, they may find it in their own interest to
allow their opponent to gain market share so that the ongoing Pareto-superior
relationship may continue. This may provide an explanation for the observation
in practice of deviations in the bid-ask spread without resulting in price wars.

Figure 6 illustrates, for three different values of δ, the (p1, p2) pairs that can
support cooperation. The values of δ that are plotted are 1, 0.9, and 0.8. The
other parameters are �x = 1, U0 = 10, T = 10, γ = 1, and λ = 1. The shaded
region corresponds to the (p1, p2) pairs for which cooperation is possible if both
traders use a discount factor δ = 0.8. Note that the boundaries of the sets are
not straight lines due to the bilinear terms p1p2, but are nearly so for small
values of p1 and p2. For δ = 1, and for small probabilities, the set boundaries go
to the origin with slope Vp/�Vd and �Vd/Vp. As the sum of the two probabilities
becomes smaller, traders are required to be of more similar sizes for a cooper-
ative outcome to be feasible. Note that the bold and dashed lines correspond to

28 To determine the division of this surplus between the insiders and the external player, it is
possible to use a generalized Nash bargaining solution in which the insiders receive fraction τ

of the surplus and the client receives fraction 1 − τ . The example that we consider (Figure 5) is
equivalent to assuming τ = 1. This is without any significant loss of generality, since relaxing this
assumption leads to the same comparative statics.
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Figure 5. Minimum δ as a function of distress probabilities, for the cases p1 = p2 (bold)
and p2 = 0.5 − p1 (dashed). Parameters are �x = 1, U0 = 10, T = 10, γ = 1, and λ = 1. The
horizontal reference lines correspond to the iso-δ lines in Figure 6.

the cases plotted in Figure 5. Considering cases with smaller overall frequency
of events p1 + p2 corresponds to moving the dashed line to the lower-left. Fig-
ures 5 and 6 illustrate the result that market shares need to be sufficiently
symmetric for cooperation to be possible.

In the next section, we consider these relationships when the liquidity event
(�x) is stochastic across time. We also discuss the effect of multimarket contact
and contagion of illiquidity.

B. Episodic Illiquidity and Contagion

Shocks of Random Magnitude. In Section II.A, we evaluate the requirements
for cooperation given that �x is a fixed amount of the asset. In that formulation,
if cooperation is possible (based on the market parameters and δ), the traders
never deviate. To characterize episodic illiquidity, �x is better modeled as a
random variable. In the event of a large �x, it is more profitable for the traders
to deviate for a one-time gain. However, instead of initiating a grim-trigger
strategy, there are more profitable strategies available to the cartel.
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Figure 6. Values of p1 and p2 for which cooperation can be sustained, given δ (plotted
for the cases δ = 1, δ = 0.9, and δ = 0.8). For instance, for δ = 0.8 the cooperative equilibrium
exists if p1 and p2 fall in the shaded region. The bold and dashed lines indicate the values of p1
and p2 that are plotted in Figure 5.

The large traders implicitly agree to restrain from predating when the mag-
nitude of the shock is below some threshold �x∗ and, conversely, not to punish
other players in future periods for predating when the shock is above that
threshold. That is, when a player has a trading requirement that exceeds �x∗,
the other player will predate, but cooperation is resumed in subsequent periods.
This equilibrium behavior results in episodically increased volatility.29

Another way to describe this equilibrium is that each trader agrees to restrain
from predating on the other, but only as long as they behave responsibly in their
risk management. This creates a natural restriction on the exposure that each
trader can take without a disproportionate increase in the risk of their portfolio.

The value of �x∗ that is optimal for the cartel (in the sense of leading to the
highest expected value for its members) can be computed for any distribution

29 Episodic illiquidity also occurs during extreme financial distress. During extreme distress, a
member of the oligopoly becomes a finite concern. Because the horizon of this game is finite, the
players work out their strategy profiles by backward induction and cooperation disappears.
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of the trading requirement for each trader. In general, �x∗ can only be charac-
terized implicitly.

RESULT 5 (shocks of random magnitude): Consider trading requirements for
each of two traders, which are shocks of random magnitude �x identically and
independently distributed according to the density f (y), which we assume to be

(i) symmetric, f (y) = f (−y),
(ii) with unbounded support, f ( y) > 0, ∀ y ∈ R,

(iii) and with finite variance,
∫ ∞
−∞ y2 f ( y)d y < ∞.

A strategy with episodic predation with threshold �x∗ is feasible for any �x∗

that satisfies

2C
∫ �x∗

0
y2 f ( y) dy ≥ K (�x∗)2. (26)

The supremum of �x∗ such that the inequality is satisfied exists, and we desig-
nate it by �x. The following strategy profile constitutes a subgame-perfect Nash
equilibrium. At time t = 0, predate if |�x| > �x∗, and otherwise cooperate. At
time t �= 0,

1. If the history of play ht−1 is such that for every period in which |�x| < �x∗

there was no predation, then

(a) if |�x| > �x∗, predate this period.
(b) if |�x| < �x∗, cooperate.

2. If ht−1 is such that for |�x| < �x∗, there was predation, then predate.

The constants above are

C = δ

1 − δ
[p1(1 − p2)Kd + 2p1 p2K2 − (1 − p1)p2K ] (27)

and K = Vp/�x2, with Kd = �Vd/�x2 and K2 = �V2/�x2 (that is, K, Kd, and
K2 are the factors multiplying �x2 in the expected values Vp, �Vd, and �V2;
note that K in equation (26) is the factor in the expected gain to the predator).

In what follows, the parameter C/K can be interpreted as representing the
benefits relative to the costs of cooperation. For each of the players i, the numer-
ator C is increasing in the discount rate (δ), increasing in pi, and decreasing
in pj �=i. The ratio C/K is also increasing in Kd (the welfare loss if player i is
distressed and player pj �=i is not), increasing in K1 (the total welfare loss if both
are distressed and do not cooperate), and decreasing in K (the profit from pre-
dation). Thus, C/K is a measure of the relative strengths of the incentives to
cooperate and predate.

To gain intuition about how the parameter C/K affects market liquidity, let
the shock �x be normally distributed. In Figure 7, the left-hand side of the
inequality in equation (26) is plotted with the solid line and the right-hand side
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Figure 7. Left- (solid) and right-hand side (dashed) of equation (26). The curves intersect
at zero, �x, and �x.

is plotted with the dashed line. For �x∗ in an interval [�x, �x], it is possible to
sustain the subgame-perfect Nash equilibrium. For �x∗ > �x, the value gained
for deviation is too high and cooperation cannot be maintained. The supremum
�x defines the most profitable strategy for the cartel. (Note that �x might be
zero, in which case traders never cooperate.)

The nature of the solutions is essentially independent of the scale parameter
of the distribution. Consider a family of distributions fa(y) = af (ay). If we deter-
mine solutions in terms of � x∗/a, the set of feasible thresholds is independent
of the asset parameters. The inequality in equation (26) is equivalent to

2
C
K

∫ �x∗
a

0
y2 fa( y) dy ≥

(
�x∗

a

)2

, (28)

so that, after the corresponding scaling, the solutions to the inequality are
constant with scaling of the distribution. For example, if we consider the zero-
mean normal distribution
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Figure 8. Normally distributed shocks, upper and lower bounds for ∆ x∗/σ as a function
of the asset parameters. The ratio C/K measures the benefits from cooperation relative to the
costs of cooperating in financial markets. The open circle at C/K = 4.6729 is the minimum C/K for
which there exists a nonzero �x, that is, for which an episodic predation strategy is feasible.

f ( y) = 1

σ
√

2π
e− 1

2
y2

σ2 , (29)

we can rewrite the inequality as

K
C

(
�x∗

σ

)2

≤ 2
∫ �x∗

σ

0
y2 1√

2π
e− 1

2 y2
dy. (30)

Therefore, we can parameterize any such problem using only C/K and �x∗/σ .
Figure 8 plots �x/σ and �x/σ as a function of C/K. The solid line represents

�x/σ and the dotted line represents �x/σ . For any value of C/K, the vertical
segment between the lines is the set of �x∗ (in standard deviations) such that
cooperation is possible. Note that there exists a critical value for C/K (repre-
sented by the small circle), below which it is impossible to support cooperation.
Any threshold we might consider would always be too high, in that the immedi-
ate gains from deviation provide an incentive to deviate, and too small, in that
the expected future rewards from cooperation during those shocks that do fall
below the threshold do not provide sufficient incentive to cooperate.
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We can now determine the minimum or critical C/K for which there is a non-
zero �x, that is, for which an episodic predation strategy is feasible. Consider
again the normal distribution and the inequality in equation (30). Taking the
derivative of the difference between the two sides of the inequality with respect
to �x∗ and equating it to zero leads to

K
C

= 1√
2π

�x∗

σ
e− 1

2

(
�x∗

σ

)2

. (31)

This characterizes the points in Figure 7 at which the solid and dashed lines
have the same derivative. Using this at the supremum (i.e., with equality hold-
ing in equation (30)), we obtain the case in which the lines touch at a single
point rather that having two intersections (other than zero). After a change of
variable in the integral, we obtain

∫ �x∗
σ

0
y2 1

2π
e− 1

2 y2
dy = 1

2

(
�x∗

σ

)3 1√
2π

e− 1
2

(
�x∗

σ

)2

, (32)

which is straightforward to solve numerically for �x∗/σ . Since C/K only depends
on �x∗ through �x∗/σ , the minimum C/K ratio for which there is a feasible
strategy of the episodic predation type does not depend on the scale parameter of
the distribution. For the normal distribution, the minimum C/K for which there
is a nonzero �x, that is, for which an episodic predation strategy is feasible,
is C/K = 4.6729 for any σ . This imposes restrictions on the parameters. For
assets with parameters such that C/K is less than this critical value, no episodic
predation strategy is feasible. The threshold associated with this C/K ratio is
�x = �x = 1.3688 σ .

In Section II.A, we showed that the ability for traders to cooperate when the
liquidity needs are fixed is increasing in γ

λ
. By Result 3, it is easy to show that

C/K is also monotonically increasing in γ and monotonically decreasing in λ.
This implies that markets with high γ

λ
will have a higher C/K. Based on this

observation, the following predictions are natural. For assets with a high level of
asymmetric information (high γ ) that are widely traded in large volume (low λ),
we would expect liquidity to be stable most of the time (apparent liquidity), but
to disappear episodically. An example of this type of security would be a growth
stock (perhaps a tech stock) with diffuse ownership. In contrast, a low γ

λ
asset

may have liquidity levels that fluctuate more regularly, but that do not exhibit
marked illiquidity in an episodic way. An example of a low γ

λ
asset would be a

thinly traded AA-rated corporate bond. To our knowledge, securities have not
been previously grouped into these categories and studied for their permanent
and temporary illiquidity, as is necessary to test the empirical implications of
our model.

Contagion across Markets. Suppose that the members of the oligopoly can coop-
erate in more than one market. As an example, consider institutional traders
who dominate mortgage markets and are also strategic traders in other fixed
income markets. If a liquidity event is large enough to disturb cooperation in
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Figure 9. Lowest and highest r such that the strategy (episodic predation with conta-
gion over n assets, n = 1, 2, . . . , 8) is an equilibrium, plotted as a function of the asset
parameters, common to all assets. The shocks are independent and normally distributed condi-
tional on shocks being either all positive or all negative. The ratio C/K measures the benefits from
cooperation relative to the costs of cooperating in financial markets. The open circle for each curve
is the minimum C/K for which there exists a non-zero �x, that is, for which an episodic predation
strategy is feasible. Note that the minimum C/K decreases as the number of markets n increases.

one market, it may also affect cooperation in the others. Bernheim and Whin-
ston (1990) find that if markets are not identical, multimarket contact supports
cooperation. In our case, and since assets are not perfectly correlated, multimar-
ket contact makes it easier to maintain cooperation. In this section, we discuss
the effects of multimarket contact on episodic illiquidity across markets.

Consider traders that participate in n markets, where the trading require-
ment in each market is a stochastic random variable. We define a liquidity event
to be such that all trading targets for each of the n assets have the same sign
(i.e., liquidity shocks occur in the same direction in all markets).30 The trading

30 Implicitly, we are assuming that there is a common cause driving the liquidity event. That is,
the liquidity needs for each trader are positively correlated across markets. We can generalize the
model to account for arbitrary correlation. However, it seems less plausible that a trader would
simultaneously have both large positive and large negative liquidity needs.
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Table II
Multimarket Contact across n-Markets

The ratio C/K measures the benefits from cooperation relative to the costs of cooperating in financial
markets. For n = 1, 2, . . . , 20, we calculate the minimum values of C/K for which cooperation is
possible over multiple markets. As the number of markets increases (n increases), the relative
benefit needed to support cooperation decreases.

n C/K n C/K n C/K n C/K

1 4.6729 6 2.2664 11 1.9299 16 1.7740
2 3.3509 7 2.1687 12 1.8907 17 1.7517
3 2.8507 8 2.0913 13 1.8563 18 1.7314
4 2.5747 9 2.0280 14 1.8259 19 1.7127
5 2.3950 10 1.9751 15 1.7986 20 1.6954

targets are modeled as jointly normal and conditionally independent given that
they are either all positive or all negative. We also use the simplifying assump-
tion that trading targets in all the assets have the same variance. The density
in the positive orthant (y such that yi ≥ 0, for all i) and in the negative orthants
(y such that yi ≤ 0, for all i) is

f ( y) = 2n−1

σ n(2π )n/2
e− yT y

σ2 , (33)

and zero elsewhere.
The shape of the optimal region for cooperation is spherical. This is the region

in which the incentive to predate, which is proportional to
∑n

i=1 �x2
i , is constant.

The inequality for n assets involves an n-dimensional integral, which using the
radial symmetry of the normal distribution, can be written as

2C
∫ r

0
Sn yn+1 f ( y) dy ≥ K r2, (34)

where r is the radius of the cooperation region and

Sn = 1
2n

2π
n
2

�
(n

2

) (35)

is the area of the intersection of the n-dimensional sphere with unit radius with
the positive orthant. It can easily be verified that, as for the one-asset case, the
nature of the solutions is essentially independent of the scale parameter of the
distribution (say the standard deviation).

Figure 9 is the multimarket version of Figure 8 in that it plots �x and �x
for episodic predation over n markets, n = 1, 2, . . . , 8. The minimum value of
C/K that is required to support cooperation decreases as the number of mar-
kets increases. Adding markets can make cooperation possible where it would
otherwise not be possible. This is because adding markets increases the rela-
tive value of cooperation, given that punishment is effected over all markets.
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(Consider, for instance, C/K = 4.0. With these parameters, traders are unable
to cooperate over one market, but are able to do so over two or more markets.)
Also note that the supremum of r increases with n. The probability that an
episode of predation will occur is in fact seen to decrease with n. We expect
episodes of predation to be more significant, since they now affect n markets,
but less frequent with contagion strategies. The minimum values of C/K for
cooperation over multiple markets, n = 1, 2, . . . , 20, are listed in Table II.

III. Conclusion

We present a model where the breakdown of cooperation in financial markets
leads to episodic illiquidity. This model is based on an equilibrium strategy in
which traders cooperate most of the time through repeated interaction, pro-
viding apparent liquidity to one another. However, episodically this coopera-
tion breaks down, especially when the stakes are high, leading to opportunism
and loss of this apparent liquidity. Our model provides an explanation for why
episodic liquidity breakdowns do not occur more often, and predicts that this
apparent liquidity is more easily sustained in asset markets with a high per-
manent price impact of trading and a low temporary price impact of trading.

We solve a competitive trading game for strategic traders (predatory stage
game), which is formulated as a continuous-time dynamic programming prob-
lem using an asset pricing equation that accounts for transaction costs from
the price impact of trading. According to this model, traders race to market,
selling quickly in the beginning of the period. Also while predators initially
race distressed traders to market, they eventually fade them and buy back.
The presence of predators in the market leads to a surplus loss to the strategic
traders.

Cooperation in the market is modeled by embedding this predatory stage
game in a dynamic game with infinite horizon. Cooperation allows for the trad-
ing of large blocks of the asset at more favorable prices, so that the surplus loss
due to predatory trading can be avoided. This leads to predictions about the
types of markets in which cooperation is more likely.

We believe that our model presents a plausible argument for the level of
predation or cooperation in financial markets being a determinant of available
liquidity, and a contributor to the episodic nature of illiquidity.

Appendix A

Proof of Result 1 (General solution): Given that each player’s objective is
linear in Ut and that the strategies are open-loop, we can bring the expectation
inside the integral (Fubini’s theorem applies since the trading rate Yi

t is admis-
sible) and consider the equivalent problem with a deterministic asset pricing
equation. Replacing Ut with a constant u = U0,

Pt = u + γ

n∑
j=1

X j
t + λ

n∑
j=1

Y j
t . (A1)
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This is a standard deterministic control problem with objective concave in Xi
t

and Yi
t and constraint linear in the control Yi

t . If the solutions to the necessary
conditions are continuous, sufficiency follows.

With the multiplier function Zi
t associated with the constraint dXi

t = Yi
tdt,

necessary optimality conditions for the problem faced by trader i are (Basar
and Olsder (1999))

u + γ

n∑
j=1

X j
t + λ

n∑
j=1

Y j
t + λ Y i

t + Z i
t = 0

dZi
t = −γ Y i

t dt. (A2)

The second equation ensures that the multiplier function is continuous (as
required for sufficiency). Differentiating the first equation with respect to t
and substituting the second,

γ

n∑
j=1

Y j
t dt + λ

n∑
j=1

dY j
t + λ dYi

t − γ Y i
t dt = 0. (A3)

The n such equations for each trader can be collected together as

λ(I + 11T ) dYt = γ (I − 11T )Yt dt, (A4)

where I is the n × n identity matrix, 1 is the n-vector with all entries equal
to one, and 11T is an n × n matrix with all elements equal to one. From the
formula for the inverse of the rank-one update of a matrix (Kailath (1980)),
the inverse of I + 11T is I − 1

n+ 111T , which we use to write the linear dynamic
system in the form

dYt = γ

λ
A Yt dt, where A = I − 2

n + 1
11T . (A5)

Since A1 = 1 − 2
n+ 1 n1 = −n− 1

n+ 1 1, the vector of ones is an eigenvector of the
matrix A, with associated eigenvalue −n− 1

n+ 1 . Likewise, vectors in the null-space
of 1 are eigenvectors of A, with eigenvalue 1: For v orthogonal to the vector of
ones, that is, satisfying 1Tv = 0, we find that Av = v. The dimension of this
subspace, and multiplicity of the eigenvalue 1, is n − 1. Since the matrix A
has a full set of n independent eigenvectors, all Jordan blocks are of size one
and solutions to the system of linear differential equations are as stated in
(5). This characterizes any continuous policy (with continuous dual functional)
that is an extremal of the problem. Since a continuous extremal exists, from
the concavity of the objective in the state and control and from the linearity of
the constraint, this is the unique extremal of the problem (in the admissible
class). The n trading target constraints and 1Tb = 0 uniquely determine the n
free parameters in the solution (integrate the Yi

t , equate to �xi, and solve for a
and b). Q.E.D.
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We next show a lemma and corollary, which will be of use in proving Result 2.

LEMMA A.1: The function f : R+ �→ R

f ( y) = 1 + e− y

1 − e− y − 2
y

(A6)

is positive increasing.

Proof : We first show lim y→0 f ( y) = 0. Applying l’Höpital’s rule, we find

lim
y→0

f ( y) = lim
y→0

− ye− y + 1 + e− y − 2e− y

1 − e− y + ye− y = lim
y→0

ye− y

2e− y − ye− y = 0. (A7)

We now show f ′(y) > 0:

f ′( y) = −2e− y

(1 − e− y )2
+ 2

y2
= 2

(1 − e− y )2 y2
(− y2e− y + 1 + e−2 y − 2e− y ). (A8)

For y > 0, the denominator is positive. We show that the numerator is also
positive, g(y) = −y2e−y + 1 + e−2y − 2e−y > 0, from g(0) = 0 and g′(y) > 0:

g ′( y) = −2 ye− y + y2e− y − 2e−2 y + 2e− y = e− y (−2 y + y2 − 2e− y + 2). (A9)

Likewise, we show h(y) = −2y + y2 − 2e−y + 2 > 0, from h(0) = 0 and h′(y) > 0:

h′( y) = −2 + 2 y + 2e− y , (A10)

which is positive if e−y > 1 − y, which is true for any y �= 0 (from the intercept
and derivative at zero and from the convexity of the exponential). Q.E.D.

COROLLARY A.1: The function g : R+ �→ R

g ( y) = y
1 + e− y

1 − e− y (A11)

is positive increasing.

Proof : Write

g ( y) = y f ( y) + 2, (A12)

where f is as in the previous lemma. The product of two positive increasing
functions is positive increasing. Q.E.D.

Proof of Result 2 (Expected total surplus and loss for multiple traders): The
expected surplus is obtained by integration of

−Pt

n∑
i=1

Y i
t = −Pt n a e− n−1

n+1
γ

λ
t (A13)



2268 The Journal of Finance

over t ∈ [0, T], followed by algebraic simplification. The proofs of the mono-
tonicities are direct applications of the lemma above or of its corollary, using
y = T , y = γ , y = 1

λ
, and y = n− 1

n+ 1 (with n relaxed to be in R). For λ and n, we
also need the fact that the composition of two monotonic functions is monotonic.
Q.E.D.

Proof of Result 3 (Expected total surplus and loss for two traders): By equa-
tion (8), Y = Y d

t + Y p
t = 2ae− 1

3
γ

λ
t . By integration of −PtY over t ∈ [0, T], fol-

lowed by algebraic simplification, the results in equations (13) and (16) are de-
rived. The monotonicities are verified by differentiation of equation (16). We de-
fine V− = Vd − Vp and Y− = Y d

t − Y p
t = 2be

γ

λ
t . Integrate −PtY− over t ∈ [0, T]

and simplify to obtain

V− = Vd − Vp = −u �x − γ
e

γ

λ
T

e
γ

λ
T − 1

�x2. (A14)

Then Vd and Vp are obtained by simplification of (V2 + V−)/2 and (V2 − V−)/2.
The proof for the monotonicity of Vp

�Vd
is along the same lines as for Result 2

(with lengthier algebra). The bounds on Vp

�Vd
are the limits at 0 and +∞, obtained

by applying l’Höpital’s rule as needed. Q.E.D.

Proof of Result 4 (Repeated game with two symmetric traders): For trader 1,
the gains from cooperation must exceed those of one-time deviation and infinite
noncooperation, or

δ1

1 − δ1

[
p1(1 − p2)V1(�x) + 1

2
p1 p2V1(2�x)

]

≥ Vp(�x) + δ1

1 − δ1

[
(1 − p1)p2Vp(�x) + p1(1 − p2)Vd (�x) + 1

2
p1 p2V2(2�x)

]
.

(A15)

Since �V2 is quadratic in � x, we have that 1
2 �V2(2�x) = 2 �V2(�x) (we then

omit the argument when it is �x). The first equation in (19) follows by solving
for δ1. The second equation is derived similarly for trader two. For both traders
to cooperate, it must be that δ ≥ max{δ1, δ2}. The monotonicities can be proved
algebraically, along the same lines as for Result 2. Q.E.D.

Proof of Result 5 (Shocks of random magnitude): Equation (A15) can be writ-
ten in this context as equation (26), where f is the density of �x, and C and
K are as defined. For values of C sufficiently large or values of K sufficiently
small, equation (26) will be satisfied and there will exist a �x such that coop-
eration is possible. As long as |�x| < �x∗, the traders will cooperate since the
value of cooperating exceeds that of a one-time deviation and subsequent grim-
trigger play. If |�x| ≥ �x∗, the traders will predate and resume cooperation
in the next period if possible. If equation (26) is not satisfied, then coopera-
tion is not possible and the traders will always predate. Thus, there exists a
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subgame-perfect Nash equilibrium as described. The left-hand side of equa-
tion (26) is bounded since f has finite variance and the right-hand side is un-
bounded. Hence, the supremum of �x∗ is bounded. For existence of �x, note
that zero is a solution. Q.E.D.

Appendix B

Closed-Loop Solution

In our analysis of the stage game, the strategies considered are deterministic.
They are open-loop, in the sense that traders choose their strategies at time
t = 0. It is assumed that traders would not respond to other traders’ deviations
from their optimal strategies. We would have obtained the same solution had
we defined the Yi

t to be Ft-adapted (where Ft is the filtration of the σ -algebras
generated by Bt). Note, however, that this is in the strict sense that traders are
aware of the underlying process Ut that defines price fundamentals, but not of
the actual price Pt and of the other players’ trading rates Yt. (The argument
for the solution to this variation on the open-loop problem to be the same as in
Result 1 is based on the value functions’ linearity in Ut, as is done below in this
section.)

We now consider closed-loop strategies, in that traders know or can infer the
other traders’ rate of trading and respond accordingly. Under such strategies,
Yi

t is adapted to all the information existing at time t, and players can revise
their trading decisions at any time based on such information. This means
that earlier decisions must account for other players’ response function at later
times. This inability to commit ahead of time to not deviate from a given strategy
over the entire [0, T] period leads to more aggressive strategies than in the
open-loop case, including faster racing.

Closed-loop strategies are substantially more difficult to analyze than open-
loop strategies, and thus we are not able to provide a closed-form solution.
We do provide a description of the equilibrium optimal strategies in terms of
a value function with two scalar parameters that satisfy a triangular system
of nonlinear differential equations. Our numerical simulations show that the
open- and closed-loop solutions are not substantially different. We provide some
analytical justification for this observation. In particular, from a fixed-point
analysis of the Riccati equations, we provide closed-form expressions for the
expected value for each of the players when T is large.

We derive the closed-loop result for the deterministic case and then show that
it holds for the stochastic pricing equation. We consider strategies in which the
trading rate is constant over time increments of length �t. The reward for
trader i over each time increment is

ri(u, y , �t) =
∫ �t

0
−(u + γ 1T y τ + λ1T y) yi dτ (B1)

= −
(
u +

(γ

2
�t + λ

)
1T y

)
yi�t. (B2)
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We formulate the problem as a dynamic game, with an n + 1-dimensional state,
composed of u(t) ∈ R and φ(t) ∈ Rn. The first component, u(t), is the expected
price at time t, including the permanent price impact of previous trades (in
previous notation, u(t) = Ut + γ

∑n
i=1 X i

t). The n components of φ(t) are the
remaining trading targets for each trader, that is, the amount they still need
to trade by T (in previous notation, φi(t) = xTi − Xi

t ). The state transition over
a period of length �t with each player trading at a constant rate yi is

u′(u, y , �t) = u + γ 1T y �t, (B3)

φ′(φ, y , �t) = φ − y�t. (B4)

The value functions for each of the n traders must simultaneously satisfy

V i(u, φ, t) = max
yi

ri(u, y , �t) + V i(u′(u, y , �t), φ′(φ, y , �t), t + �t),

i = 1, . . . , n. (B5)

We show that the value functions can be represented in the form

V i(u, φ, t) = −uφi − α(t)φi1Tφ + β(t)(1T φ)2, (B6)

and derive Riccati equations for α(t), β(t) ∈ R. We take the limit �t → 0 to find
the differential equations for the continuous-time case.

Substituting equations (B6), (B2), (B3), and (B4) in equation (B5) and letting
�t → 0, we obtain

−dα(t)
dt

φi1Tφ + dβ(t)
dt

(1T φ)2

= max
yi

−λ yi1T y − γ φi1T y + α φi1T y + α yi1T φ − 2β 1T y 1T φ. (B7)

Differentiating with respect to yi and equating to zero, we obtain the optimality
condition

λ( yi + 1T y) = (α − γ )φi + (α − 2β)1Tφ, (B8)

which we collect over i = 1, . . . , n as

λ(I + 11T ) y = ((α − γ )I + (α − 2β)11T )φ. (B9)

Multiplying on the left by 1
λ
(I − 1

n+ 111T ), we solve for the equilibrium trading
rates as a function of the state,

y = 1
λ

(
(α − γ )I + 1

n + 1
(−2β + γ )11T

)
φ, (B10)

which can be written individually as

yi = 1
λ

(
(α − γ )φi + 1

n + 1
(−2β + γ )1Tφ

)
, i = 1, . . . , n. (B11)
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The sum of the trading rates is then

1T y = 1
λ

(
α − 2

n
n + 1

β − 1
n + 1

γ

)
1Tφ. (B12)

Substituting equations (B11) and (B12) in equation (B7), we verify that the
structure of the value function as postulated in (B6) is indeed preserved over
time (more strongly, it can be verified that the structure is preserved before
letting �t → 0). Collecting terms and simplifying, we obtain the following tri-
angular representation for the Riccati equations,

dα

dt
= 1

λ
α(α − γ ), (B13)

dβ

dt
= 1

λ

(
2αβ − 1

(n + 1)2
(2nβ + γ )2

)
. (B14)

So far we have assumed a deterministic u. The objectives for the deterministic
case are linear in u, the corresponding optimal policies do not depend on u, and
the value functions were found to be linear in u. Using these value functions
for the stochastic case, the ∂2Vi/∂u2 terms in the HJB equations are zero, and
all other terms are as in the HJB equations for the deterministic case. That is,
if given value functions and optimal policies satisfy the HJB equations for the
deterministic case, they also satisfy the HJB equations for the stochastic case.

Conditions for verification of the HJB equation are met (Karatzas and Shreve
(1988)) as the value function is differentiable in t and smooth in the state.

While the system of nonlinear equations (B13) and (B14) is difficult to solve
in closed form, a number of its properties can be studied. As T → ∞, since
the expected values are bounded due to the overall convexity of the problem
and the triangular structure precludes oscillatory behavior, α(0) and β(0) must
converge to fixed points of the differential equations. The fixed points for the
first equation are 0 and γ , of which only α = γ is stable (note that equation (B13)
is convex-quadratic in α, and we are considering integration backwards in time).
With α = γ , we solve for the fixed points of β, which are found to be 1

2γ and 1
2n2 γ ,

of which only β = 1
2n2 γ is stable (note that equation (B14) is concave-quadratic

in β).
In the case n = 1, we have φi(0)1Tφ(0) = (1Tφ(0))2 = �x2, so that

V = −U0�x − γ�x2 + 1
2

γ�x2 = −U�x − 1
2

γ�x2. (B15)

As expected, we recover the same value as for the open-loop case (which corre-
sponds to a constant trading rate).

Consider now the case n = 2, with the distressed trader needing to trade
φ1(0) = �x, and the predatory trader’s target being φ2(0) = 0. For the distressed
trader, φ1(0)1Tφ(0) = (1Tφ(0))2 = �x2. For the predatory trader, φ2(0)1Tφ(0) =
0 and (1Tφ(0))2 = �x2. Table AI summarizes the same expected values as in
Table I, but for T large (T → ∞, or equivalently, by change of units, λ small,
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Table AI
Expected Values from Strategic Trading: Comparing Open-Loop

and Closed-Loop Strategies
Listed are the expected values that traders gain or lose when a sell-off occurs in the market. Con-
sidering the limit conditions when T → ∞ or λ → 0, we calculate the values to the strategic traders
when they use open-loop and closed-loop strategies. U0 is the expected value of future dividends and
γ measures the permanent impact of trading. The values to the traders are qualitatively similar,
though the aggregate surplus loss to the traders is worse in the closed-loop case.

Open-Loop Closed-Loop

Surplus to distressed trader, no
predation

V1 −U0 �x − 1
2 γ �x2 −U0 �x − 1

2 γ �x2

Surplus to distressed trader
during predation

Vd −U0 �x − 5
6 γ �x2 −U0 �x − 7

8 γ �x2

Change in surplus to distressed
trader (V1 − Vd)

�Vd
1
3 γ �x2 3

8 γ �x2

Surplus to predator Vp
1
6 γ �x2 1

8 γ �x2

Total surplus to predator and
distressed trader

V2 −U0 �x − 2
3 γ �x2 −U0 �x − 3

4 γ �x2

Change in overall surplus with
predatory trading

�V2
1
6 γ �x2 1

4 γ �x2

i.e., λ → 0). Overall, the expected values are similar. The loss to the distressed
trader is somewhat larger in the closed-loop case, the gain to predatory trader
somewhat smaller, and the overall welfare loss somewhat larger. The ratio
of gains to the predatory trader per losses to the distressed trader decreases
from 1/2 in the open-loop case to 1/3 in the closed-loop case (see lower bound
in Result 3). Cooperation between traders will therefore be more likely in the
closed-loop case.

For n traders, and still under the assumption of a long trading horizon, we
can derive the shape of the racing behavior under closed-loop strategies. During
the racing stage, that is, for small t, α(t) and β(t) are approximately constant
(under the assumption of large T or small λ). Using the stable fixed-point values
α = γ and β = 1

2n2 γ in equation (B11), we obtain

yi = γ

λ
· n − 1

n
· 1Tφ

n
, i = 1, . . . , n. (B16)

Since yi = −dφi/dt, we conclude that with closed-loop strategies, the racing
behavior is of the form

yi = a e− γ

λ
n−1

n t , (B17)

with the constant a ∈ R a function of the average trading target. This is slightly
faster than what we find for the open-loop case, yi = ae− γ

λ
n−1
n+1 t .



Episodic Liquidity Crises 2273

REFERENCES
Abreu, Dilip, 1988, On the theory of infinitely repeated games with discounting, Econometrica 56,

383–396.
Abreu, Dilip, David Pearce, and Ennio Stacchetti, 1986, Optimal cartel equilibria with imperfect

monitoring, Journal of Economic Theory 39, 251–269.
Acharya, Viral, and Lasse Pedersen, 2005, Asset pricing with liquidity risk, Journal of Financial

Economics 77, 375–410.
Almgren, Robert, 2000, Optimal execution of portfolio transactions, Journal of Risk 3, 5–39.
Almgren, Robert, and Neil Chriss, 1999, Value under liquidation, Risk 12, 61–63.
Attari, Mukarram, Antonio Mello, and Martin Ruckes, 2005, Arbitraging arbitrageurs, Journal of

Finance 60, 2471–2511.
Back, Kerry, and Shmuel Baruch, 2004, Information in securities markets: Kyle meets Glosten and

Milgrom, Econometrica 72, 433–465.
Basar, Tomas, and Geert Olsder, 1999, Dynamic Noncooperative Game Theory (Society for Indus-

trial and Applied Mathematics: Philadelphia).
Battalio, Robert, Andrew Ellul, and Robert Jennings, 2007, Reputation effects in trading on the

New York Stock Exchange, Journal of Finance 62, 1243–1271.
Berhardt, Dan, Vladimir Dvoracek, Eric Hughson, and Ingrid Werner, 2005, Why do larger orders

receive discounts on the London stock exchange? Review of Financial Studies 18, 1343–1368.
Bernheim, Douglas, and Michael Whinston, 1990, Multimarket contact and collusive behavior,

RAND Journal of Economics 21, 1–26.
Bertsimas, Dimitris, and Andrew Lo, 1998, Optimal control of execution costs, Journal of Financial

Markets 1, 1–50.
Brunnermeier, Markus, and Lasse Pedersen, 2005, Predatory trading, Journal of Finance 60, 1825–

1863.
Chan, Louis, and Josef Lakonishok, 1995, The behavior of stock prices around institutional trades,

Journal of Finance 50, 1147–1174.
Cheng, Minder, and Ananth Madhavan, 1997, In search of liquidity: Block trades in the upstairs

and downstairs markets, Review of Financial Studies 10, 175–203.
Cocco, Joao, Francisco Gomes, and Nuno Martins, 2003, Lending relationships in the interbank

market, Working paper, London School of Business.
DeMarzo, Peter, and Branko Uroevic, 2000, Optimal trading by a large shareholder, Working paper,

Stanford Graduate School of Business and Haas School of Business.
Desgranges, Gabriel, and Thierry Foucault, 2005, Reputation-based pricing and price improve-

ments in dealership markets, Journal of Economics and Business 57, 493–527.
Duffie, Darrell, Nicolae Garleanu, and Lasse Pedersen, 2005, Over-the-counter markets, Econo-

metrica 73, 1815–1847.
Dutta, Prajit, and Ananth Madhavan, 1997, Competition and collusion in dealer markets, Journal

of Finance 52, 245–276.
Fedyk, Yuriy, 2001, Large investor optimization problem with direct effect of trades on prices,

Working paper, Olin School of Business.
Foster, F. Douglas, and S. Viswanathan, 1996, Strategic trading when agents forecast the forecasts

of others, Journal of Finance 51, 1437–1478.
Friedman, James, 1971, A non-cooperative equilibrium for supergames, Review of Economic Studies

38, 1–12.
Gennotte, Gerard, and Albert Kyle, 1991, Intertemporal insider trading with a smooth order flow,

Working paper, Haas School of Business Administration, Berkeley.
Green, Edward, and Robert Porter, 1984, Noncooperative collusion under imperfect price informa-

tion, Econometrica 52, 87–100.
Hansch, Oliver, Narayan Naik, and S. Viswanathan, 1999, Preferencing, internalization, best ex-

ecution, and dealer profits, Journal of Finance 54, 1799–1828.
Holthausen, Robert, Richard Leftwich, and David Mayers, 1990, Large block transactions, the speed

of response, and temporary and permanent stock-price effects, Journal of Financial Economics
26, 71–95.



2274 The Journal of Finance

Huang, Roger, and Hans Stoll, 1997, The components of the bid-ask spread: A general approach,
Review of Financial Studies 10, 995–1034.

Huberman, Gur, and Werner Stanzl, 2004a, Arbitrage-free price update and price-impact functions,
Econometrica 72, 1247–1275.

Huberman, Gur, and Werner Stanzl, 2004b, Optimal liquidity trading, Review of Finance 9, 165–
200.

Kailath, Thomas, 1980, Linear Systems (Prentice-Hall, New Jersey).
Karatzas, Ioannis, and Steven Shreve, 1988, Brownian Motion and Stochastic Calculus (Springer,

Berlin).
Kaul, Aditya, Vikas Mehrotra, and Randall Morck, 2000, Demand curves for stocks do slope down:

New evidence from an index weights adjustment, Journal of Finance 55, 893–912.
Keim, Donald, and Ananth Madhavan, 1996, The upstairs market for large-block transactions:

Analysis and measurement of price effects, Review of Financial Studies 9, 1–36.
Kraus, Alan, and Hans Stoll, 1972, Price impacts of block trading on the New York Stock Exchange,

Journal of Finance 27, 569–588.
Massa, Massimo, and Andrei Simonov, 2003, Reputation and interdealer trading: A microstructure

analysis of the treasury bond market, Journal of Financial Markets 6, 99–141.
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