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Abstract

We develop a theoretical model that explains how episodic illiquidity can re-

sult from a breakdown in cooperation between traders and manifest itself in

predatory trading. In a multi-period framework, and with a continuous-time

stage game with an asset-pricing equation that accounts for transaction costs,

we describe an equilibrium where traders cooperate most of the time through

repeated interaction and provide ‘apparent liquidity’ to each other. Coopera-

tion can break down, especially when the stakes are high, and lead to predatory

trading and episodic illiquidity. Equilibrium strategies involving cooperation

across markets can cause the contagion of illiquidity.
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Why is illiquidity rare and episodic? Pastor and Stambaugh (2003) detect only

14 aggregate low-liquidity months in the time period 1962-1999. The purpose of

this paper is to develop a theoretical model that explains how episodic illiquidity

can result from a breakdown in cooperation between traders and manifest itself

in predatory trading.

We develop a dynamic model of trading based on liquidity needs. During

each period, a liquidity event may occur in which a trader is required to liquidate

a large block of an asset in a relatively short time period. This need for liquidity

is observed by a tight oligopoly, whose members may choose to predate or

cooperate. Predation involves racing and fading the distressed trader to the

market, causing an adverse price impact for the trader1. Cooperation involves

refraining from predation and allows the distressed trader to transact at more

favorable prices. In our model, traders cooperate most of the time through

repeated interaction, providing ‘apparent liquidity’ to each other. However,

episodically this cooperation breaks down, especially when the stakes are high,

leading to opportunism and loss of this apparent liquidity.
1Predatory trading has been defined by Brunnermeier and Pedersen (2004) as trading that

induces and/or exploits another investor’s need to change their position. It is important to

distinguish predatory trading from front-running. Front-running is an illegal activity in which

a specialist, acting as an agent of an investor, trades on his own account in the same direction

as his client before he fulfills his client’s order. In this way, the specialist profits but violates

his legal obligation as an agent of the investor. Predatory activity occurs in the absence of

such a legal obligation.
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The following quote provides a recent example of an episodic breakdown in

cooperation between cooperative periods in the European debt market (New

York Times Sept. 15, 2004):

“...The bond sale, executed Aug. 2, caused widespread concern in

Europe’s markets. Citigroup sold 11 billion euros of European gov-

ernment debt within minutes, mainly through electronic trades, then

bought some of it back at lower prices less than an hour later, rival

traders say. Though the trades were not illegal, they angered other

bond houses, which said the bank violated an unspoken agreement

not to flood the market to drive down prices.”

This suggests that market participants cooperate, though there is episodic pre-

dation which leads to acute changes in prices. It also points out that predatory

behavior can involve either exploiting a distressed trader’s needs or inducing

another trader to be distressed.

Cooperation has been empirically demonstrated in the Interbank market.

Cocco, Gomes, and Martins (2003) detect evidence that banks provide liquidity

to each other in times of financial stress. They also find that banks establish

lending relationships in this market to provide insurance against the risk of

shortage or excess of funds during the reserve maintenance period. Cooperation

and reputation have been documented to affect liquidity costs on the floor of the

New York Stock Exchange (NYSE). Battalio, Ellul, and Jennings (2004) show an

increase in liquidity costs in the trading days surrounding a stock’s relocation on
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the floor of the exchange.2 They find that brokers who simultaneously relocate

with the stock and continue their long-term cooperation with the specialist

obtain a lower cost of liquidity, which manifests in a smaller bid-ask spread.

In our predatory stage game, each trader faces a continuous-time, dynamic

programming problem. Our model is closely related to the model by Brunner-

meier and Pedersen (2004), except that we use a pricing equation that is linear

in the first derivative of inventory of the asset. Thus, the price impact of trading

is endogenous and results, roughly speaking, quadratic transaction costs. Also,

in contrast to the Brunnermeier and Pedersen formulation, our model predicts

price jumps during incidents of predation, which in turn allows us to model

episodic illiquidity in the dynamic game. Further, we are able to derive the

aggregate surplus losses to the traders when predatory behavior occurs.

In the equilibrium of our one-period model, traders ‘race’ to market, selling

quickly in the beginning of the period. In the equilibrium strategy traders sell-

off at a decreasing exponential rate. Also in equilibrium, predators initially race

the distressed traders to market, but eventually ‘fade’ them and buy back. This

racing and fading behavior is well-known in the trading industry and has been

previously modelled by Foster and Viswanathan (1996). The associated trading

volumes are also consistent with the U-shaped daily trading volume seen in

financial markets.

We model cooperation by embedding the predatory stage game in a dynamic
2This is an exogenous event that changes long-run relationships between brokers and the

specialist.
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game. We first consider an infinitely-repeated game in which the magnitude of

the liquidity event is deterministic and fixed. In this framework, we derive

an equilibrium which is Pareto superior for the traders and describe how the

cooperation between traders avoids the surplus loss due to predatory trading.

We also model the interaction between strategic traders in this environment and

outsiders who trade in the market.

We next model episodic illiquidity by allowing the magnitude of the liquidity

event in the repeated game to be stochastic. Given stochastic liquidity shocks,

we provide predictions as to the magnitude of liquidity event required to trigger

liquidity crisis and demonstrate explicitly how a breakdown in cooperation leads

to observed price volatility. Finally, we allow for multimarket contact in both

the deterministic and stochastic versions of our repeated game. This provides

for greater cooperation across markets, but leads to contagion of predation and

liquidity crisis across all markets.

Several empirical implications emerge from our model. First, our model

predicts that non-anonymous markets should be stable most of the time with

high ‘apparent’ liquidity, but will experience illiquidity in an episodic fashion.

This fact is consistent with the observed rareness of liquidity events in financial

markets (Pastor and Stambaugh 2003; Gabaix, Krishnamurthy, and Vigneron

2004). Second, occasions where one player faces extreme financial distress are

associated with periods of reduced liquidity. Finally, our model suggests that

illiquidity is usually observed across markets (ie. contagion occurs), and not in

isolation.
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The paper is organized as follows. Section 1 introduces the pricing relation-

ship. We provide closed-form solutions to the problems when one distressed

trader liquidates a block of assets, when multiple traders liquidate, when there

exists one opportunistic trader and one distressed trader, and when there exist

multiple predators and distressed traders. Section 2 provides the solution to the

supergame that fixes the magnitude of the liquidity event and uses the stage

game with one predator and one distressed trader as a basis. Section 2 also

models the trading relationship between insiders and outsiders in these mar-

kets. Section 3 models episodic illiquidity and the contagion of illiquidity across

markets. Section 4 concludes.

Related literature

There exists significant empirical evidence that illiquidity in the market is rare

and episodic (Pastor and Stambaugh 2003; Gabaix, Krishnamurthy, and Vi-

gneron 2004). As previously noted, Pastor and Stambaugh (2003) detect only 14

aggregate low-liquidity months in the time period 1962-1999. Likewise, Gabaix,

Krishnamurthy, and Vigneron (2004) document only two episodes in the last

decade during which the Mortgage-Treasury spread was excessively wide.

Other work on predatory trading includes papers by Brunnermeier and Ped-

ersen (2004) and Attari, Mello, and Ruckes (2004). In Brunnermeier and Ped-

ersen predatory behavior involves an opportunistic participant trading in the

same direction as those in distress. In their model where there is no immediate

price impact from predatory activity, the opportunistic trader trades at the same
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rate as the traders in distress. Our paper extends their work by endogenizing

the price impact of trading, which also allows for price jumps during predatory

incidents. Attari, Mello, and Ruckes (2004) use a two-period model to describe

predatory trading behavior. The authors show that predators may even lend

to others that are “financially fragile” because they can obtain higher profits

by trading against them for a longer period of time. Our paper generalizes this

type of model in a multi-period framework, with each period in a continuous-

time setting. The main difference between our work and previous work by both

Brunnermeier and Pedersen and Attari, Mello, and Ruckes is that we consider a

model where the traders interact repeatedly over time. To our knowledge, this

has not been addressed in the literature.

We use a pricing rule that accounts for both the effect of asset supply in the

market and the rate of trading by participants on price formation. The effect of

large trades on asset prices has been considered in empirical studies (Keim and

Madhavan 1996; Kaul, Mehrotra, and Morck 2000; Holthausen, Leftwich, and

Mayers 1990; Chan and Lakonishok 1995) and in theoretical studies (Bertsimas

and Lo 1998; Fedyk 2001; DeMarzo and Uroševic 2000). A similar formulation of

this pricing relationship has been previously derived by Vayanos (1998), as well

as by Gennotte and Kyle (1991) who show that it arises from the equilibrium

strategies between a market maker and an informed trader when the position

of the noise traders follows a smoothed Brownian motion. Likewise, Pritsker

(2004) obtains a similar relationship for the price impact of large trades when

institutional investors transact in the market.
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There is a large empirical literature that shows that cooperation affects

price evolution in financial markets (Battalio, Ellul, and Jennings 2004; Cocco,

Gomes, and Martins 2003; Berhardt, Dvoracek, Hughson, and Werner 2004;

Desgranges and Foucault 2002; Reiss and Werner 2003; Ramadorai 2003; Han-

sch, Naik, and Viswanathan 1999; Massa and Simonov 2003). In addition to

the papers by Cocco, Gomes, and Martins (2003) and Battalio, Ellul, and Jen-

nings (2004) already cited, Massa and Simonov (2003) demonstrate evidence in

the Italian Treasury bond market that ”salient traders” who are either known

to be smart, skeptical, or scared have a statistically significant effect on prices

and on volatility in the market. This relates to our model in that we assume

that traders are well known to each other and develop relationships. These re-

lationships affect price formation in the market and they cooperate to provide

liquidity to each other.

1 Trading and Predation

1 A Asset price model

The economy consists of two types of participants. The strategic traders, i ∈

{1, 2, ..., n}, are risk-neutral and maximize trading profits. These traders form

a tight oligopoly over order flow in financial markets. These large traders are

usually present in markets as proprietary trading desks, who trade both on their

own account as well as for others. The strategic traders have inside informa-

tion regarding transient liquidity needs within the market because they observe
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the order flow. Thus, they attempt to generate profits through their ability

to forecast price moves, and to affect asset prices. The other players are the

long-term investors who form the competitive fringe. The long-term investors

usually trade in the interest of mutual funds or private clients and exhibit a less

aggressive trading strategy. Long-term investors are more likely to take a “buy

and hold strategy”, limit the number of transactions that they undertake, and

avoid taking over-leveraged positions. The long-term investors trade according

to fundamentals. The primary difference between the two types of traders is

that the long-term investors are not aware of transient liquidity needs in the

economy.

There exist a risk-free asset and a risky asset, traded in continuous-time.

The aggregate supply S > 0 of the risky asset at any time t is divided between

the strategic investors’ holdings Xt and the long-term investors’ holdings Zt

such that

S = Xt + Zt. (1)

The return on the risky asset is stochastic. The yield on the risk-free asset is

zero.

The asset is traded at the price

Pt = Ut + γXt + λYt, (2)

where

dXt = Ytdt, (3)
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and Ut is the stochastic process

dUt = σ(t, Ut)dBt, (4)

with Bt a one-dimensional Brownian motion on (Ω,F , P ). The pricing equation

is composed of three parts. Ut represents the expected value of future dividends

and is modelled as a martingale. The diffusion does not include a drift term.

This is justified by the short-term nature of the events modelled. Most results

described here can be derived with the inclusion of a drift term in the diffusion,

but with considerable loss in clarity of exposition.3

The second term represents an inventory parameter in the economy and is

present in the model by Brunnermeier and Pedersen. Xt is the amount of the

asset that the strategic traders hold at time t and γ is a market depth parameter.

As Xt increases, the supply available to the long-term investors decreases and

the price at which they can access the asset increases.

The third term in the pricing formula measures the instantaneous price pres-

sure that occurs through trading. This term is composed of a price impact

parameter λ and the rate of trade Yt. The faster the traders sell, the lower a
3More precisely, the assumption is that the difference between the drift coefficient and the

continuous-time discount factor is zero. For the multi-period game which we will later discuss,

the assumption is that T is relatively small, that is the distress and predation events develop

over short periods of time, and the discounting over each period is therefore not significant.

The period-to-period discount factor is then also close to one. Since each period is short,

the multi-stage game will consist of many short periods, where the probabilities of a player

being distressed in any given period are small, so that the period-to-period discount factor is

significant to the problem.

10



price they will realize. This term models the transaction costs of trading and

distinguishes our stage model from Brunnermeier and Pedersen (2004).

During a stage game (liquidity event), each trader seeks to maximize trading

profits subject to initial and terminal holding constraints. Each trader solves

the following dynamic program

maximize
∫ T

0
−PtYt dt

subject to Xi
0 = x0

Xi
T = xT

(5)

by choosing a trading rate Y i
t , where the total net trading rate by the large

traders is Yt =
∑n

i=1 Y i
t , and dXi

t = Y i
t dt. In the equilibrium, each trader

chooses an action (trade) that is the best response to the other traders’ actions

The trading rate is a stochastic process, since it can depend on previous prices.

It must, however, be Ft-adapted, that is, decisions cannot depend on future

prices.

In the following subsections, we describe the equilibrium optimal trading

policies under different scenarios, and evaluate expected values and surplus loss

effects that occur when there exist predators in the market and when there

exists selling competition between distressed traders.

1 B Single large trader

The following result explores the optimal trading rule when a trader who needs

to trade has monopoly power. That is, the trader buys or sells in the absence

of other strategic traders. The optimal trading policy for a single large trader
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(n = 1, Yt = Y 1
t ) is to trade at a constant rate. Without loss of generality, we

assume that the initial position in the asset is zero.

Result 1 (One Trader) Consider a trader with initial position X0 = 0 and

target XT = ∆x in an asset with price process

Pt = Ut + γXt + λYt

dXt = Yt dt

dUt = σ(t, Ut) dBt,

(6)

where Bt is a Brownian motion on (Ω,F , P ). The trader maximizes

E
∫ T

0

−PtYtdt, (7)

over the Ft-adapted policies for the trading rate Yt. Then, the optimal policy is

Yt =
1

T − t
(∆x − Xt) =

∆x

T
. (8)

The expected value for the single large trader is

V1 = −u ∆x −
(

γ

2
+

λ

T

)
∆x2. (9)

Proof. Proof by verification. Consider the value function

φt(x, u) = −u(∆x − x) − γ

2
(∆x2 − x2) − λ

T − t
(∆x − x)2. (10)

To verify the result, apply to φ the generator of the process with policy y,

Lyφ =
∂φ

∂x
y +

∂2φ

∂u2
σ(t, u) +

∂φ

∂t
(11)

=
(

u + γx + 2
λ

T − t
(∆x − x)

)
y − λ

(T − t)2
(∆x − x)2. (12)
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The Hamilton-Jacobi-Bellman (HJB) equation is satisfied since

F + Lyφ = − λ

(
y − 1

T − t
(∆x − x)

)2

(13)

is maximized to zero with policy (8), where F = −(u+γx+λy)y is the integrand

of (7). The value V1 is derived directly from the value function. �

The key finding of this result is that it is optimal for the distressed seller to

smooth his order flow and sell at a constant rate. Further, the expected value to

a distressed trader when no other strategic traders are present is the best value

that a distressed trader can derive. When other players trade strategically at

the same time in competition or against a distressed trader, the value that the

trader can derive is strictly lower that V1. We will formalize this assertion in

the next subsection.

1 C Multiple traders, general solution

We now describe the general structure of the equilibrium trading policies for the

game with multiple traders. This formulation will serve a basis for deriving the

equilibrium strategies when several distressed traders are present without op-

portunism and when there are both opportunistic and distressed traders present

in the economy. We begin by considering the deterministic case where Ut = u,

for some constant u and all t. We will then show that the solution to this

problem also solves the stochastic case.

Result 2 (Multiple Traders with Deterministic Price) Consider n traders, each

13



with position Xi
t and trading at rate Y i

t . The asset price is

Pt = u + γ
n∑

j=1

Xj
t + λ

n∑
j=1

Y j
t , (14)

where u ∈ R is a constant. The traders are all mutually informed of their

initial positions x0i and trading targets xTi. Trader i chooses Y i
t to solve the

optimization problem

maximize
∫ T

0
−PtY

i
t dt

subject to dXj
t = Y j

t dt, j = 1, . . . , n,

Xj
0 = x0j , Xj

T = xTj , j = 1, . . . , n,

(15)

assuming that the other traders also trade optimally, that is that Y j
t , j �= i, are

solutions to equivalent problems. Then, the equilibrium optimal policies are of

the form

Y i
t = a e−

n−1
n+1

γ
λ t +

n−2∑
k=0

biktke
γ
λ t, (16)

with b such that
∑n

i=1 bik = 0 for each k.4

Proof. Introducing the multiplier function Zi
t , necessary optimality conditions

are

u + γ
∑n

j=1 Xj
t + λ

∑n
j=1 Y j

t + λ Y i
t + Zi

t = 0

dZi
t = −γ Y i

t dt.

(17)

4These policies constitute an equilibrium over open-loop policies. The open-loop policy is

consistent with trading in the markets of interest. Each player is informed about the number

of traders present, and about the other players’ trading targets. However, once a trading

strategy is initiated, information about each player’s current instantaneous trading rate is

generally not immediately available. We have also analyzed closed-loop policies, and even

though the solution in this case cannot be expressed in closed-form, it is qualitatively similar.
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Differentiating the first equation with respect to t, and substituting the second,

γ

n∑
j=1

Y j
t dt + λ

n∑
j=1

dY j
t + λdY i

t − γY i
t dt = 0. (18)

The n such equations for each i can be written together as

λ(I + 1)dY = γ(I − 1)Y dt, (19)

where I is the n×n identity matrix, and 1 is the n×n matrix with all elements

equal to one. From the formula for the inverse of the rank-one update of a

matrix, the inverse of the left-hand-side matrix is

(I + 1)−1 = I − 1
n + 1

1, (20)

which we use to write the linear dynamic system in the form

dY =
γ

λ
AY dt, A = I − 2

n + 1
1. (21)

Denote by 1̄ the n-vector with all entries equal to one. Since

A1̄ = 1̄ − 2
n + 1

n1̄ = −n − 1
n + 1

1̄, (22)

the vector of ones is an eigenvector of the matrix A, with associated eigenvalue

−n−1
n+1 . Likewise, vectors in the null-space of 1̄ are eigenvectors of A, with

eigenvalue 1: for v orthogonal to the vector of ones, that is satisfying 1̄T v = 0,

Av = v − 2
n + 1

1v = v. (23)

The dimension of this sub-space, and multiplicity of the eigenvalue 1, is n − 1.

Solutions to the system of linear differential equations are therefore as in (16),

and equilibrium optimal policies must be of this form. �
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The trading dynamic derived in Result 2 has a unique solution for the cases

when the number of traders, n = 2, and when all of the traders are distressed

(not acting as predators). We will illustrate these cases in Section 1 D and

Section 1 E. For n > 2 and the presence of predators, the equilibrium optimal

policies are in general not unique, as b can lie anywhere in an affine sub-space

of dimension n − 2. This non-uniqueness arises from our pricing equation as

Yt =
∑n

i=1 Y i
t . Each trader i chooses Y i

t based on
∑

j �=i Y j
t . Therefore, any

combination of Y j
t for j �= i will lead to the same trading dynamic. Hence,

we observe multiple equilibrium when multiple predators and distressed traders

coexist. This non-uniqueness does not preclude surplus analysis, which is de-

scribed below. Before deriving expected value results for multiple traders, we

show that, on account of the Martingale property of Ut, the solution to the

deterministic case also solves the stochastic case.

Result 3 (Multiple Traders with Stochastic Price) Consider the n trader prob-

lem as in Result 2, but with the asset price following the stochastic process

Pt = Ut + γ
n∑

j=1

Xj
t + λ

n∑
j=1

Y j
t

dUt = σ(t, Ut) dBt,

(24)

where Bt is a Brownian motion on (Ω,F , P ), and trader i maximizing

E
∫ T

0

−PtY
i
t dt, (25)

over the Ft-adapted policies for the trading rate Y i
t . Then, the equilibrium

optimal policies are as in (16).
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Proof. Since the objectives for the deterministic case are linear in u, and the

corresponding optimal policies do not depend on u, the value functions are linear

in u. Using these value functions for the stochastic case, the ∂2φi/∂u2 terms

in the HJB equations are zero, and all other terms are as in the HJB equations

for the deterministic case. That is, if given value functions and optimal policies

satisfy the HJB equations for the deterministic case, they also satisfy the HJB

equations for the stochastic case. �

As noted above, if n > 2 and some of the traders are predators, the equi-

librium optimal policies are in general not unique, as b can lie anywhere in an

affine sub-space of dimension n − 2. The non-uniqueness of the equilibrium is

significant because different equilibria correspond to different expected values

for each trader. However, the coefficient a is always uniquely determined. Since

the total holdings by the large strategic traders only depends on the constant

a, the total surplus is the same for all solutions.

The following result generalizes the surplus effects of our model, which we

will apply to the two-trader stage game in Section 1 E. We define Vn as the

total surplus in the market when n traders play this game and we define ∆Vn

as the change in surplus that occurs compared to the expected value derived

in Section 1 B for one distressed trader. We find that the loss in surplus is

increasing with the number of traders.

Result 4 (Expected Total Surplus and Loss for Multiple Traders) The total

17



surplus for n traders with a combined trading target ∆x is

Vn = − u ∆x − γ

2

(
1 +

n − 1
n + 1

· 1 + e−
n−1
n+1 Γ

1 − e−
n−1
n+1 Γ

)
∆x2. (26)

where Γ = γ
λT . For λ small (Γ → ∞),

Vn → − u ∆x − n

n + 1
γ ∆x2. (27)

The expected loss in total surplus from competition is

∆Vn = V1 − Vn = γ

(
1
2
· n − 1
n + 1

· 1 + e−
n−1
n+1 Γ

1 − e−
n−1
n+1 Γ

− 1
Γ

)
∆x2. (28)

∆Vn is monotonic increasing in T , γ, and n, and monotonic decreasing in λ.

For λ small (Γ → ∞),

∆Vn → 1
2
· n − 1
n + 1

γ ∆x2, (29)

and for λ large (Γ → 0),

∆Vn → 0. (30)

Proof. By integration of −Pt

∑n
i=1 Y i

t = −Pt na e−
n−1
n+1

γ
λ t over t ∈ [0, T ],

followed by algebraic simplification. The monotonicities are verified by differ-

entiation, and the limits follow by applying l’Hôpital’s rule as needed. �

1 D Multiple distressed traders, symmetry, absence of preda-

tors

We now use the general solution from Section 1 C to derive the trading equi-

librium for multiple traders who are distressed in the absence of any predatory

behavior. The traders “race” to market in a decreasing exponential fashion. As
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the number of traders increases, the trading intensity increases, approaching a

finite trading intensity in the limit.

Result 5 (Multiple Identical Traders) Consider n traders, with identical trad-

ing targets ∆xi = ∆x/n. The unique symmetric equilibrium strategy is

Y i
t = a e−

n−1
n+1

γ
λ t, i = 1, . . . , n. (31)

where

a =
n − 1
n + 1

γ

λ

(
1 − e−

n−1
n+1

γ
λ T

)−1 ∆x

n
. (32)

Proof. This is a direct consequence of Result 3. �

If the market is deeper (small γ), trading will occur comparatively later. If

the short-term price impact of trading is smaller (small λ), trading will occur

comparatively earlier. Figure 1 plots the trading policies for multiple symmetric

traders with ∆x = 1, T = 1, and γ
λ = 10. As expected, for n = 1 we recover

the constant selling rate of Section 1 B. If there are more traders, everybody

will trade earlier. The rate of trade goes to e−
γ
λ t as n → ∞. That is, there is

an upper bound on how fast traders will sell their position, regardless of how

many traders are in the race.

Figure 2 plots the corresponding price process (for Ut = u constant). For

a single trader, the price changes linearly over the trading period. For a large

number of traders, the price function over t ∈ [0, T ] goes to a constant value.

That is, the information regarding the trader’s target position in the asset be-

comes fully incorporated in the asset price quickly.
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Figure 1: Competition among traders leads to a ‘race to trade’. Trading rate

for multiple traders with identical targets (solid for n = 1, 2, 3, 4, 5, dotted for

n = ∞). Parameters for example are ∆x = 1, T = 1, γ/λ = 10.
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Figure 2: Price for multiple traders with identical targets (solid for n =

1, 2, 3, 4, 5, dotted for n = ∞). Parameters for example are ∆x = −1, T =

1, γ/λ = 10.
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1 E Stage game with two traders

We now set up and analyze the two-player predatory stage game, which will form

the basis for the infinitely-repeated game in Section 2. Consider one distressed

and one opportunistic trader, and a game which proceeds as follows. A liquidity

event occurs at time t = 0, whereby one of the two strategic traders is required

buy or sell a large block of the asset in a short time horizon (say, by the end

of the trading day). Forced liquidation usually arises because of the need to

offset another cash-constrained position such as an over-leveraged position, or

it occurs as a result of a risk management maneuver. The second trader is

informed of the liquidity event, and of the trading requirement of the distressed

trader. The opportunistic trader returns to his original position in the asset by

the end of the trading period, but will trade strategically to exploit the price

impact of the distressed trader’s selling. Each trader chooses a trading schedule

over the period to maximize his own expected value, assuming the other trader

will do likewise.

Result 6 (One Distressed Trader and One Predatory Trader) Consider two

traders, under the model and assumptions of Result 3. A distressed trader is

required to change position in the asset by ∆x in time T . A predatory trader

is required to return to the initial position in the asset by time T . The unique

equilibrium trading policies are

Y d
t = a e−

1
3

γ
λ t + b e

γ
λ t

Y p
t = a e−

1
3

γ
λ t − b e

γ
λ t,

(33)
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where

a = 1
6

γ
λ

(
1 − e−

1
3

γ
λ T

)−1

∆x

b = 1
2

γ
λ

(
e

γ
λ T − 1

)−1
∆x.

(34)

Proof. This follows from Result 3, and from the constraints on total trading

−3aλ
γ

(
e−

1
3

γ
λ T − 1

)
+ bλ

γ

(
e

γ
λ T − 1

)
= ∆x

−3aλ
γ

(
e−

1
3

γ
λ T − 1

)
− bλ

γ

(
e

γ
λ T − 1

)
= 0.

(35)

�

For ∆xd > 0, the solution is such that a > 0 and b > 0. The shape of

the trading strategy depends on the parameters of the market. Figure 3 gives

an example, with ∆xd = 1, T = 1, and γ
λ = 10. The strategy involves the

opportunistic trader initially racing the distressed trader to the market in an

exponential fashion, and then fading the distressed trader towards the end of

the period, also exponentially. If the first trader needs to sell, that is ∆xd < 0,

the predatory trader sells short at beginning and buys back in later periods to

cover his position. If the distressed trader is required to buy a block of the

asset, the opposite strategy by the predator ensues. In general, we see that the

presence of the predator will lead the distressed trader to increase his trading

volume at the beginning and at the end of the trading period. This leads to a

U-shaped trading volume over the period, a pattern observed in most markets.5

5A variation on this model would be to allow the opportunistic trader to trade over a longer

time period than the distressed trader. The solution for such a model is similar, with racing

and fading occurring while the distressed seller is trading. However, the predatory trader will

now choose what position to have by the end of the distressed seller’s deadline. This choice

is made by maximizing the expected value from trading over the distressed seller’s period,
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Figure 3: One trader with position target (solid) and one ‘opportunistic’ trader

(dotted). Parameters for example are ∆xd = 1, T = 1, γ/λ = 10.

Now we apply Result 4 to the two-trader case and derive a surplus result

that we will use in Section 2. We define V2 as the total expected value for the

large traders when two traders play this game, and we define Vd and Vp as the

expected values to the distressed and opportunistic traders. Likewise, we define

∆V2 as the change in surplus that occurs compared to the expected value, V1,

derived in Section 1 B for a single distressed trader. In the following result, we

show that ∆V2 is strictly positive.

Result 7 (Expected Total Surplus and Loss for Two Traders) The total surplus

for the distressed trader and the predatory trader is

V2 = Vd + Vp = − u ∆x − γ

3
· 2 − e−

1
3Γ

1 − e−
1
3Γ

∆x2. (36)

plus the expected value from selling the position at the end of that period at a constant rate

over the additional time. For ease of exposition, we restrict our discussion to a common time

period for all traders.
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where Γ = γ
λT . For λ small (Γ → ∞),

V2 → − u ∆x − 2
3
γ ∆x2. (37)

The expected loss in total surplus from predation is

∆V2 = V1 − V2 = γ

(
1
6
· 1 + e−

1
3Γ

1 − e−
1
3Γ

− 1
Γ

)
∆x2. (38)

∆V2 is positive, monotonic increasing in T and in γ, and monotonic decreasing

in λ. For λ small (Γ → ∞),

∆V2 → 1
6
γ ∆x2, (39)

and for λ large (Γ → 0),

∆V2 → 0. (40)

Proof. By equation (33), Y = Y d
t + Y p

t = 2ae−
1
3

γ
λ t. By integration of −PtY

over t ∈ [0, T ], followed by algebraic simplification, the results in equations (36)

and (38) are derived. The monotonicities are verified by differentiation of equa-

tion (38). The limits follow by applying l’Hôpital’s rule as necessary. �

The limit for λ small provides some economic intuition regarding the mag-

nitude of the effects. If we examine ∆V2 as λ becomes small, we see that the

total change in surplus goes to 1
6γ ∆x2. Given our result from Section 1 B, we

can see that the predator gains 1
6γ ∆x2 and the distressed seller loses 1

3γ ∆x2.

That is, in the limit, the predator gains half of what the distressed trader loses.

To generalize this finding, we derive the following result.

Result 8 (Expected Value for Two Traders) The expected values for the dis-
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tressed trader and for the predatory trader are

Vd = −u ∆x − γ

6
5eΓ + e

2
3Γ + e

1
3Γ − 1

eΓ − 1
∆x2,

Vp =
γ

6
· e

2
3Γ − 1

e
2
3Γ + e

1
3Γ + 1

∆x2,

(41)

where Γ = γ/λ. For λ small (Γ → ∞),

Vd → −u ∆x − 5
6
γ ∆x2,

Vp → 1
6
γ ∆x2.

(42)

Proof. We define V− = Vd−Vp and Y− = Y d
t −Y p

t = 2be
γ
λ t. Integrate −PtY−

over t ∈ [0, T ] and simplify to obtain

V− = Vd − Vp = − u ∆x − γ
eΓ

eΓ − 1
∆x2. (43)

Vd and Vp are obtained by simplification of (V2 + V−)/2 and (V2 − V−)/2. �

2 Cooperation and Liquidity

2 A Repeated Game

The repeated game is based on the case in which there are two strategic traders,

as well as a large number of long-term investors. Each player faces a common

discount factor δ, and the common asset price determinants u, γ, and λ. At

the beginning of each stage, nature moves first, assigns a type to each of the

traders and both traders know each other’s type in each round. In each round,

each trader, with probability pi i = 1, 2, must liquidate a large position of size

∆x, and may act as a predator with probability 1 − pi. The magnitude of the
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shock is constant. An alternative approach, which we take in Section 3, is to

model ∆x as a random variable, and compute the value of the supergame by

expectation over future liquidity events.

In each time period one of the following events occurs: neither of the two

players is distressed, with probability p00; the second player is distressed but

the first is not, with probability p01; the first player is distressed but the second

is not, with probability p10; both players are distressed, with probability p11.

The four probabilities add to one. If the probability of each of the two players

being distressed is independent of the other, we have p00 = (1 − p1)(1 − p2),

p01 = (1 − p1)p2, p10 = p1(1 − p2), and p11 = p1p2. Cooperation is possible

when either there exists one predator and one distressed trader (with probability

p10 + p01), or when both players are distressed (with probability p11). If only

one of the players is distressed and needs to liquidate a position, cooperation

involves the other refraining from engaging in predatory trading. If both traders

are distressed, cooperation involves both traders selling at a constant rate and

refraining from racing each other to the market for their own gain.

Cooperation provides the players with the ability to quickly sell large blocks

of shares, for the price that would be obtained by selling them progressively over

time. That is, while cooperation is ongoing, the distressed trader is allowed to

“ride down” the demand curve, rather than having the information regarding

the trading target quickly incorporated into the asset price, ahead of most of

his trading. In this sense, that large blocks of shares can be moved for a better

price, the market will appear more liquid. It will also avoid the volatility and

26



potential instability from the large trading volume peaks associated with the

racing and fading.

The punishment strategy considered is a trigger strategy in the spirit of

Dutta and Madhavan (1997) and Rotemberg and Saloner (1986). 6 We inves-

tigate the effects of cooperation on liquidity by contrasting the most collusive

equilibrium with the trigger strategy that uses as punishment the inferior stage

game equilibrium derived in Section 1 E.

Result 9 (Repeated Game with Two Symmetric Traders) Define the expected

values as in Section 1. The discount factor required to support collusion is

δ ≥ Vp

p10[V1 − Vd] + 1
2p11[V1(2∆x) − V2(2∆x)] + (1 − p01)Vp

. (44)

Substituting for the values previously derived this can be expressed as

δ ≥
{

1 − p01 + p10

[
2e

2
3

γ
λ

T −e
1
3

γ
λ

T +2

(e
1
3

γ
λ

T −1)2
− 2(e

2
3

γ
λ

T +e
1
3

γ
λ

T +1)

(e
1
3

γ
λ

T −1)(e
1
3

γ
λ

T +1) 1
3

γ
λ T

]

+p11

[
2(e

2
3

γ
λ

T +e
1
3

γ
λ

T +1)

(e
1
3

γ
λ

T −1)2
− 4(e

2
3

γ
λ

T +e
1
3

γ
λ

T +1)

(e
1
3

γ
λ

T −1)(e
1
3

γ
λ

T +1) 1
3

γ
λ T

] }−1

.

(45)

For λ small (γ
λT → ∞),

δ ≥ 1
2p10 − p01 + 2p11 + 1

. (46)

For λ large (γ
λT → 0)

δ ≥ 0. (47)

6Other alternative punishment schemes include those in which cooperation is abandoned

for a fixed number of periods and the more complicated punishment schemes of Abreu (1988).

Using such alternative punishment strategies does not lead to different economic results.
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Proof. Define χ = e
1
3

γ
λ T . In the non-cooperative stage game, with probability

p00 each player earns zero. With probabilities p10 or p01, the predator earns Vp

and the distressed seller earns Vd such that

Vp =
γ

6
χ2 − 1

χ2 + χ + 1
∆x2 (48)

and

Vd = −u∆x − γ

6
5χ3 + χ2 + χ − 1

χ3 − 1
∆x2. (49)

With probability p11 both traders are distressed and earn

Vr =
1
2
V2(2∆x) = −u∆x − 2γ

3
2χ − 1
χ − 1

∆x2. (50)

In the cooperative stage game when either player is a predator, they earn zero.

When a player is distressed and faces a potential predator, they earn

V1(∆x) = −u∆x − γ

2
(1 +

2
3

1
log χ

)∆x2. (51)

and when both traders are in distress, they each earn

1
2
V1(2∆x) = −u∆x − γ(1 +

2
3

1
log χ

)∆x2. (52)

To calculate the δ necessary to support cooperation, the gains to collusion must

exceed those of one-time deviation and infinite non-cooperation or

δ

1 − δ
[p10V1(∆x) +

1
2
p11V1(2∆x)] ≥ Vp +

δ

1 − δ
[p01Vp + p10Vd +

1
2
p11V2(2∆x)]

(53)

Equation (44) follows from algebraic manipulation. Equation (45) is obtained

from substitution and further algebraic manipulation. The limits are found by

using l’Hôpital’s rule as needed. �
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This result implies that cooperation can be sustained as long as both traders

are sufficiently patient. The trader’s probability of being in distress affects the

potential for collusion. If λ is large, then it is easy to support cooperation. As

the price impact of trading decreases, the relative probability of distress becomes

more important. From equation (46), it can be shown that if

p01 ≥ 2(p10 − p11) (54)

then there is no δ that supports cooperation. An important consequence of

this fact is that if the probability of distress is linked to market share, it may

benefit a large trader to allow a smaller trader to grow in size so that a Pareto

superior outcome for the strategic traders can be achieved or maintained. We

will see in the next section that this relationship becomes important when there

is competition for business with external players.

2 B Trading with Outsiders

Now, we consider the relationship between a member of the cooperating oligopoly

and an outsider who seeks to trade a large block of the asset. Because this repre-

sents a one-shot stage game, the members of the oligopoly have two alternatives.

They may initiate a predatory strategy, race and fade the outsider to the market,

and earn a profit by manipulating the price. Alternatively, the oligopoly mem-

bers may exact appropriate rents from the outsider for the use of their services

as members of the cartel (these rents may arise in the form of a bid-ask spread).

The fact that there exists a cooperative outcome in this market between the

insiders provides a means by which a relatively stable, albeit widened, bid-ask
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spread may exist, and we do not necessarily observe price volatility when a

non-member needs liquidity.

We define V ∗ as the difference between V1 and Vd(∆x). Since the outsider

would be indifferent between receiving Vd(∆x) and paying V ∗ in order to receive

V1 when trading, the total surplus available is V ∗. To determine the division of

the surplus between the insiders and the external player, we use an generalized

Nash bargaining solution. We assume that the insiders receive fraction τ of the

the surplus and the external player receives fraction 1 − τ .

In the next result, we demonstrate the requirements for collusion in the

presence of an external party who wishes to utilize the services of the cartel.

We define π1 and π2 as the probability that the external trader is a customer

of each of the traders. In this way πi represents a strategic trader’s market

share. Further, we define 1
2Vp as the value realized by a predator when two

predators trade against one who is distressed. This result describes the case

where, at any given time, only one trader is in the ‘distressed’ position, but

can be extended to the general case in which members of the cartel may be

simultaneously distressed.

Result 10 (Equilibrium with Two Insiders and an Outsider) Define q as the

probability that an external player needs to trade the asset in each period and

define π = min[π1, π2]. For given levels of V ∗, τ , and π, the δ required to

support collusion is

δ ≥ Vp − qπτV ∗

Vp − 1
2qVp

. (55)
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In order to maintain cooperation, each player’s ‘market share’ must satisfy

πi ≥
(1 − δ)Vp − 1

2qδVp

qτV ∗ . (56)

Since δ ∈ [0, 1], then it must be that

π ≥ 1
2

Vp

τV ∗ . (57)

Proof. Proceed as in Result 9. �

From equation (56), we see that the market share of external business that

each trader has impacts the ability to maintain cooperation. The model also sug-

gests that deviations in the bid-ask spread may be observed in practice without

resulting in price wars. The trader with a larger market share may be willing to

allow a smaller player a better competitive position, so that their market share

can increase. As the market shares converge, cooperation can be sustained.

Note that we have assumed so far that the outsider is not allowed to split the

order flow while, in practice, order flow splitting is common. This is consistent

with the results above. By, in effect, evening out the market share, the outside

player reduces the chance that cooperation will break down (which would lead

to a loss for the outside player).

3 Episodic Illiquidity and Contagion

3 A Shocks of Random Magnitude and Episodic Illiquidity

In Section 2, we evaluated the requirements for cooperation given that ∆x is a

fixed amount of the asset. In that formulation, cooperation is sustained and the
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traders never deviate. To characterize episodic illiquidity, ∆x is better modeled

as a random variable. In the event of a large ∆x it is more profitable for

the traders to deviate for a one-time gain. However, instead of initiating the

grim-trigger strategy outlined in Section 2, there are more profitable strategies

available to the cartel. One approach is along the lines of Rotemberg and Saloner

(1986).

The large traders implicitly agree to restrain from predating when the mag-

nitude of the shock is below some threshold ∆̃x and, conversely, not to punish

other players in future periods for predating when the shock is above that thresh-

old. That is, when a player has trading requirement that exceeds ∆̃x, the other

player will predate, but cooperation is resumed in subsequent periods. This

equilibrium behavior results in episodically increased volatility7.

Another way to describe this equilibrium is that each trader agrees to restrain

from predating on the other, but only as long as they behave ‘responsibly’ in

their risk management. This creates a natural restriction on the exposure that

each trader can take without a substantial increase in the risk of their portfolio.

The value of ∆̃x which is optimal for the cartel (in the sense of leading to

the highest expected value for its members) can be computed for any distri-

bution of the trading requirement for each player. In general, ∆̃x can only be

characterized implicitly.
7Episodic illiquidity also occurs during extreme financial distress. During extreme distress,

a member of the oligopoly becomes a finite concern. Because the horizon of this game is

finite, the players work out their strategy profiles by backwards induction and cooperation

disappears.
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Result 11 (Shocks of Random Magnitude) Consider that the trading require-

ments for each of two players are random shock magnitudes ∆x that are dis-

tributed i.i.d. according to the density f(y), which we assume to be

(i) symmetric, f(y) = f(−y),

(ii) with unbounded support, f(y) > 0,∀y,

(iii) and with finite variance,
∫ ∞
−∞ y2f(y)dy < ∞.

A strategy with episodic predation with threshold ∆̃x is feasible with any ∆̃x that

satisfies

2C

∫ ∆̃x

0

y2f(y)dy ≥ K∆̃x
2
. (58)

The supremum of ∆̃x such that the inequality is satisfied exists, and we designate

it by ∆x. The following strategy profile constitutes a sub-game perfect Nash

equilibrium. At time t = 0, we predate if ∆x > ∆̃x, and otherwise cooperate.

At time t �= 0,

1. If the history of play ht−1 is such that for every period in which ∆x < ∆̃x

there was no predation, then

(a) If ∆x > ∆̃x, predate this period.

(b) If ∆x < ∆̃x, cooperate.

2. If ht−1 is such that for ∆x < ∆̃x, there was predation, then predate.

The constants above are

C =
δ

1 − δ

[
p10

(
Kd −

(
γ

2
− λ

T

))
+ 2p11

(
K2 −

(
γ

2
− λ

T

))
− p01K

]
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K =
γ

6
e

2
3Γ − 1

e
2
3Γ + e

1
3Γ + 1

Kd =
γ

6
5eΓ + e

2
3Γ + e

1
3Γ − 1

eΓ − 1

K2 =
γ

3
2 − e−

1
3Γ

1 − e−
1
3Γ

,

where Γ = γ
λT .

Proof. Equation (53) can be written in this context as equation (58), where

f is the density of ∆x and C and K are as defined. For values of C sufficiently

large or values of K sufficiently small, equation (58) will be satisfied and there

will exist a ∆̃x such that cooperation is possible. For existence of ∆x, note that

zero is a solution. The left-hand side of equation 58 is bounded since f has finite

variance and the right-hand-side is unbounded. Hence the supremum of ∆̃x is

bounded. As long as ∆x < ∆̃x, the traders will cooperate since the value of

cooperating exceeds that of a one-time deviation and subsequent grim-trigger

play. If ∆x ≥ ∆̃x, the traders will predate and resume cooperation in the next

period if possible. If equation 58 is not satisfied, then cooperation is not possible

and the traders will always predate. Thus, there exists a subgame perfect Nash

equilibrium as described. �

Figure 4 shows an example of existence with a normally distributed shock.

The left-hand-side of the inequality is plotted with the solid-line and the right-

hand-side is plotted with the dashed-line. For ∆̃x in an interval [∆x,∆x], it is

possible to sustain the subgame-perfect Nash equilibrium. For ∆̃x > ∆x, the

value gained for deviation is too high, and cooperation cannot be maintained.

The supremum ∆x defines the most profitable strategy for the cartel. (Note

34



0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

7

8

y

∆̃x/σ

Figure 4: Left- (solid) and right-hand-side (dashed) of eq. (58). The curves

intersect at zero, ∆x, and ∆x.

that ∆x might be zero, in which case traders never cooperate.)

The nature of the solutions is essentially independent of the scale parameter

of the distribution. Consider a family of distributions fa(y) = af(ay). If we

consider solutions in terms of ∆̃x/a, the set of feasible thresholds is independent

of the asset parameters (here C and K). The inequality is equivalent to

2
C

K

∫ ∆̃x
a

0

y2fa(y)dy ≥
(

∆̃x

a

)2

, (59)

so that, after the corresponding scaling, the solutions to the inequality are con-

stant with scaling of the distribution.

As an example, consider the zero-mean normal distribution

f(y) =
1

σ
√

2π
e−

1
2

y2

σ2 . (60)
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Figure 5: Normally distributed shocks, upper and lower bounds for ∆̃x/σ as a

function of the asset parameters.

Rewriting the inequality as

K

C
≤ 2

(
∆̃x

σ

)−2 ∫ ∆x
σ

0

y2 1√
2π

e−
1
2 y2

dy, (61)

we can represent any such problem by parameterizing over C/K and ∆̃x/σ.

Figure 5 plots ∆x/σ and ∆x/σ as a function of C/K. The solid-line represents

∆x/σ and the dotted-line represents ∆x/σ. For any value of C/K, the vertical

segment between the lines is the set of ∆̃x (in standard deviations) such that

cooperation is possible. Note that there exists a critical value for C/K (repre-

sented by the small circle), below which it is impossible to support cooperation

because the gains from deviation are too great. Figure 6 shows the same analy-

sis for the case in which the underlying distribution is double-sided exponential

according to f(y) = 1
ae−

y
a .

We now determine the minimum C/K for each of the distributions for which
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Figure 6: Double-exponentially distributed shocks, upper and lower bounds for

∆̃x/a as a function of the asset parameters.

there is a non-zero ∆x, that is for which an episodic predation strategy is feasi-

ble. Consider first the normal distribution and the inequality in equation (61).

Taking the derivative of the difference between the two sides of the inequality

and equating to zero leads to

K

C
=

1√
2π

∆̃x

σ
e
− 1

2

(
∆̃x
σ

)2

. (62)

Using this at the supremum (i.e., with equality holding), and after change of

variable in the integral, we obtain∫ ∆̃x
σ

0

y2 1
2π

e−
1
2 y2

dy =
1
2

(
∆̃x

σ

)3
1√
2π

e
− 1

2

(
∆̃x
σ

)2

, (63)

which is straightforward to solve numerically for ∆̃x/σ. Since C/K only depends

on ∆̃x through ∆̃x/σ, the minimum C/K ratio for which there is a feasible

strategy of the episodic predation type does not depend on the scale parameter of

the distribution. For the normal distribution, the minimum C/K for which there
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is a non-zero ∆x, that is for which an episodic predation strategy is feasible,

is C/K = 4.6729 for any σ. The threshold for this C/K ratio is ∆x = ∆x =

1.3688σ. The same analysis can be performed for other distributions. For the

double-sided exponential distribution, f(y) = 1
ae−ay, the results as above are

C
K = 5.8824. and ∆x = ∆x = 1.4512 a.

3 B Contagion across markets

Suppose that the members of the oligopoly can cooperate in more than one

market. For example, consider institutional traders who dominate mortgage

markets are also strategic traders in other fixed income markets. If a liquidity

event is large enough to disturb cooperation in one market, it may also affect

cooperation in the others. According to Bernheim and Whinston (1990), if mar-

kets are not identical, multimarket contact supports cooperation. In our case,

and since most assets are not perfectly correlated, multi-market contact makes

it easier to maintain cooperation. In this section, we first evaluate the conta-

gion of illiquidity using the repeated game in Section 2 with ∆x fixed. Then,

we demonstrate the effects of multi-market contact on the episodic illiquidity

that occurs across markets.

To extend the model of Section 2 to multiple markets, define the probabilities

pj
00, pj

10, pj
01, and pj

11 as before, each associated with the jth market. We also

define ∆xj as the amount of asset j required to be traded and V j
p and V j

d as

the values to be gained by the predator and distressed seller in the jth market.

Result 12 (Multimarket Contact) The δ required to support cooperation in the
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presence of multimarket contact is

δ ≥
∑n

j=1 V j
p∑n

j=1 pj
10[V1(∆xj) − V j

d ] + 1
2pj

11[V1(2∆xj) − V2(2∆xj)] + (1 − pj
01)V

j
p

.

(64)

Proof. Proceed as for Result 9. �

The key and easily observed point is that the restrictions required to main-

tain stability will now be less stringent. When there is more at stake and the

penalties for deviation are greater, it is easier to support the Pareto superior

equilibrium. However, once a significant liquidity event occurs, or if the param-

eters change substantially, multiple markets may quickly become volatile.

We now consider episodic illiquidity across n markets, where the trading

requirement in each market is a stochastic random variable. We define a liquidity

event to be such that all trading targets for each of the n assets have the same

sign (i.e. liquidity shocks occur in the same direction in all markets). The

trading targets are modeled as jointly normal and conditionally independent

given that they are either all positive or all negative. We also use the simplifying

assumption that trading targets in all the assets have the same variance. The

density in the positive orthant (y such that yi ≥ 0, all i) and in the negative

orthants (y such that yi ≤ 0, all i) is

f(y) =
2n−1

σn(2π)n/2
e−

yT y

σ2 , (65)

and zero elsewhere.

The shape of the optimal region for cooperation is spherical. This is the

region in which the temptation to predate, which is proportional to
∑n

i=1 ∆x2
i ,
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is constant.

The inequality for n assets involves an integral in n dimension which, using

the radial symmetry of the normal distribution can be written as

2C

∫ r

0

Snyn+1f(y)dy ≥ Kr2, (66)

where r is the radius of the cooperation region, and

Sn =
1
2n

2π
n
2

Γ(n
2 )

(67)

is the area of the intersection of the sphere of unit radius in n dimension with

the positive orthant. It can easily be verified that, as for the one-asset case, the

nature of the solutions is essentially independent of the scale parameter of the

distribution (the standard deviation).

Figure 7 is the multi-market version of Figure 5 in that it plots ∆x and

∆x for episodic illiquidity over n markets, n = 1, 2, . . . , 8. The minimum value

of C/K that is required to support cooperation decreases as the number of

markets increases. Adding markets can make cooperation possible when it does

not exist. (Consider, for instance, C/K = 4.0. With these parameters, traders

are unable to cooperate over one market, but are able to do so over 2 or more

markets.) Also note that r increases with n. The probability that an episode

of predation will occur is in fact seen to decrease with n. Episodes of predation

will be more significant, since they now affect n markets, but less frequent with

contagion strategies.
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Figure 7: Lowest and highest r such that the strategy (episodic predation with

contagion over n assets, n = 1, 2, . . . , 8) is an equilibrium, plotted as a function

of the asset parameters, common to all assets. The shocks are independent

and normally distributed conditional on shocks being either all positive or all

negative.

n C/K n C/K n C/K n C/K

1 4.6729 6 2.2664 11 1.9299 16 1.7740

2 3.3509 7 2.1687 12 1.8907 17 1.7517

3 2.8507 8 2.0913 13 1.8563 18 1.7314

4 2.5747 9 2.0280 14 1.8259 19 1.7127

5 2.3950 10 1.9751 15 1.7986 20 1.6954
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The minimum values of C/K for cooperation over multiple markets, n =

1, 2, . . . , 20, are listed in the table above.

4 Conclusion

We solve a competitive trading game by posing a continuous-time, dynamic

programming problem for our traders, using an asset pricing equation which

accounts for transaction costs. According to our model, traders ‘race’ to market,

selling quickly in the beginning of the period. In the equilibrium strategy traders

sell-off at a decreasing exponential rate. Also in equilibrium, predators initially

race distressed traders to market, but eventually ‘fade’ them and buy back. The

presence of predators in the market leads to a surplus loss to liquidity providers

in the market.

We model cooperation by embedding this predatory stage game in an infinitely-

repeated game. Cooperation allows for the trading of large blocks of the asset at

more favorable prices. We show how traders can cooperate to avoid the surplus

loss due to predatory trading and provide predictions as to what magnitude of

liquidity event is required to trigger an observable shock in the market.

The breakdown of cooperation can lead to episodic illiquidity in the mar-

ket. We describe an equilibrium strategy where traders cooperate most of the

time through repeated interaction, providing ‘apparent liquidity’ to each other.

However, episodically this cooperation breaks down, especially when the stakes

are high, leading to opportunism and loss of this apparent liquidity. We believe
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that our model explains why episodic liquidity breakdowns do not occur more

often.

In conclusion, we believe our work presents a strong argument for the level of

predation or cooperation in financial markets being a determinant of the amount

of liquidity available, and a factor causing the episodic nature of illiquidity.
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