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A Design of Experiments (DOE) method was applied to an automated technical trading system described 

in Connors and Alvarez [1].  A cubic response curve was fit to results from 56 plus 6 trials generated by 

an I-Optimal five factor design and an optimal “sweet spot” was found that improved the outcome by 

388% over a result using settings suggested in their book. 

 

Automated trading systems, especially based on technical indicators, are becoming popular (for 

example, www.cool-trade.com).  These systems are highly dependent on settings such as moving 

average periods which are usually determined in some unsystematic fashion.  Some are set by tradition 

such as trading long only when an index is above a 200 day moving average.  Others are found by brute 

force back testing, generally by what is called “a single factor design” testing, that is, each setting is 

tested on its own.  All of these methods fail to capture the interconnectedness of the settings, nor are 

they likely to find something optimal.  These methods usually sift through many attempts before finding 

one that generates any profit at all.   

One systematic method that avoids these problems is the grid search method.  This is not generally used 

for a good reason.  For a five factor model, the type we’ll be discussing here, the number of computer 

runs covering the parameter space could run into the millions.  For some types of trading systems this 

could take weeks or even months for a single investigation.   

The Design of Experiments method is a way to solve all these problems. First, a set of points in the 

parameter space are selected based on a statistical criterion, 56 points plus 6 additional ones for the 

experiment discussed here.   Runs are conducted at each of those set of points and an outcome, 

profit/loss in this case, are recorded.  Then a polynomial function is fit to the outcome data, the trial 

points as independent variables, and the outcome as dependent.  We are now able to express the 

outcome, the profit/loss, as a simple calculation throughout the entire parameter space called a 
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response surface.  Finally, one of several types of hill-climbing methods can be applied to the response 

surface to find the “sweet spot”, the optimal parameter settings.   

For our problem here, a single run on 20 years of historical data takes .25 seconds to run on a PC.  A grid 

search on the entire parameter space with resolution of one decimal place would require 43,000,000 

runs which at a quarter of a second comes to 17.7 weeks.  On the other hand for the DOE, the 62 points 

in the parameter space takes 12.84 seconds, and the hill-climbing for the sweet spot was another 45 

seconds, a total of one minute as opposed to 17.7 weeks.   

DOE makes it possible to find optimal settings quickly and easily that take into account the relationships 

among the parameter settings in producing the outcome.  This dramatic increase in efficiency also has 

another important benefit – it makes it easy to test modifications to the structure of the trading system.  

For example, should it be a simple average, a moving average, or an exponential moving average?  A 

conclusion to that question can be found directly by repeating the trial runs and the hill-climbing for 

each method, in three minutes for the problem we’re looking at here. 

The polynomial model used for the problem in the paper is a cubic.  The cubic response surface has a 

greater ability to fit observed outcomes but it also contains a lot of terms relative to the number of 

factors which then requires many trial runs.  For a problem with run times on the order of a second or 

two, this isn’t a difficulty.  For trading systems with longer run times, for example on the order of an 

hour or so, a simpler polynomial model, such as a quadratic or an interactive (a polynomial without the 

power terms) can be used which require fewer trial runs.  A comprehensive grid search for one hour trial 

runs is completely out of the question, but a quadratic model with 15 one hour trial runs is feasible.   

 

A Technical Trading System – The VIX RSI Strategy 

On page 96 Connors and Alvarez [1] describe a trading system for the SPY: 

 

 

 

 

 

 

 

  

 

1. The SPY is above its 200-

period moving average. 

2. The 2-period RSI of the VIX is 

greater than 90 

3. Today’s VIX open is greater 

than yesterday’s close. 

4. The 2-period RSI of the SPY is 

below 30. 

5. Buy on the close. 

6. Exit when the 2-period RSI of 

the SPY closes above 65. 



The motivation for this system is to use the VIX to detect a weak and oversold market.  In a back test on 

three and a half years of historical data they found 92 signals with an average hold under five days with 

a frequency of success of 79.35%.   

 

 

A DOE Analysis 

The trading system above contains five factors: 

1. Period of the SPY moving average 

2. RSI setting of the VIX 

3. RSI setting of the SPY 

4. Exit setting of the SPY RSI 

5. Period of the RSI 

To define the parameter space we choose minimums and maximums for the first four factors: 

1. [50 – 250] 

2. [80 – 100] 

3. [15 – 45] 

4. [35 – 65] 

The fifth factor is a discrete integer which will be defined to take on the values of 2, 3, 4, 5, and 6.   The 

first factor is also a discrete integer but its large interval allows us to treat it as continuous.  Any value 

we find will be truncated to an integer without serious effect to the investigation. 

Using the Gosset [2] computer program we generate parameter settings for 56 trial runs (see Table 1).  

Daily data for the SPY and the VIX from January 29, 1993 through October 17th 2003 was selected for the 

trial runs.  A computer program written in the GAUSS programming language [3] was developed for the 

simulation of the trading system given the parameters.   

To produce a more realistic result, each simulation started with an account of $500,000, paid a $20 

transaction cost per trade, and a bid/asked spread was also included.  The results can be found in the 

last column of Table 1.   

For hill-climbing, the Sqpsolvemt program in the GAUSS Run-Time Library was used.  Sqpsolvemt uses a 

nonlinear sequential quadratic programming method allowing us to constrain the search to the 

parameter space defined by the minima and maxima.   It doesn’t handle integers however and thus a 

separate hill-climb will be conducted within each value of Factor5 and the sweet spot will be the best 

result among those separate runs. 

The 56 trials for the cubic polynomial model provide no degrees of freedom and an initial run found 

sweet spots with large error deviations.  To gain degrees of freedom and a better fit to the observations, 



a center point was added, and the sweet spots from the initial run were also added for a total of 62 

trials.   The results for each value of Factor 5 are 

Predicted Factor 1 Factor2 Factor3 Factor4 Factor5 

439654.88 250.0000 89.3615 15.0000 95.0000 2 

639913.19 250.0000 80.0000 45.0000 95.0000 3 

534355.83 141.2619 80.0000 45.0000 95.0000 4 

365909.82 128.1201 80.0000 45.0000 35.0000 5 

125703.03 102.7956 96.3250 15.0000 63.0219 6 

 

Rather than rely on the back testing for our choice of sweet spot, we will forward test each of them in 

another data set, the SPY and VIX from October 17th 2003 through October 12th, 2009.  The results for 

these runs are 

 
Annualized Sharpe Maximum 

 Profit/Loss Return Ratio Drawdown Factor5 

43930.35 1.47% 0.2687 -20468.70 2 

101995.79 3.27% 2.0457 -24108.84 3 

131039.61 3.82% 0.9835 -24006.78 4 

11610.98 0.37% 0.5874 -20825.91 5 

7320.80 0.23% 0.9562 -10596.30 6 

 

Opinions might reasonably differ here.  One the one hand, the RSI period of 4 clearly wins the profit 

contest.  On the other, the greater theoretical prediction for a period of 3 might suggest that it would be 

superior in the long run.   None of these sweet spots generate much of an annualized rate of return but 

to be fair the forward test period includes the Meltdown. 

The forward test for the original settings in Connors and Alvarez [1] are 

 
Annualized Sharpe Maximum 

Profit/Loss Return Ratio Drawdown 

28329.22 0.93% 0.5819 -20434.68 

 

The Design of Experiments method has succeeded in finding settings that produce from three and half 

to four and half times greater profit, and more than three times the annualized return.   

For the back test the period 3 sweet spot produced the following result, 

 
Annualized Sharpe Maximum 

Profit/Loss Return Ratio Drawdown 

764341.35 10.01% 1.5362 -69778.50 

 



And the back test for the original settings in Connors and Alvarez [1] are 

 
Annualized Sharpe Maximum 

Profit/Loss Return Ratio Drawdown 

156503.42 2.78% 0.5893 -39988.32 

 

Again in the back test the DOE sweet spot produces more than four times the profit and more than 

three times the annualized return. 

 

Findings 

The regression results are presented in Table 2.  There aren’t enough degrees of freedom in the model 

for very much statistical power.  However, some tentative findings are possible.  First, the results don’t 

seem to be very sensitive to the period of the SPY moving average.  In fact, a period of 200 for the sweet 

spot for the RSI period of 3 produces results in the forward test which are comparable: 

  
Annualized Sharpe Maximum 

Factor 5 Profit Return Ratio Drawdown 

3 131987.39 4% 1.6738 -25140.78 

4 130783.56 3.96% 1.2546 -24001.11 

 

While the DOE results suggest the longer the period the better, a 250 day moving average is a full year’s 

worth of data and longer periods may be impractical in some situations.  It does appear that the 

traditional period of 200, while still long, should do quite well in practice. 

Connors and Alvarez [1] strongly hold to an RSI period of 2 in contrast to the traditional period of 14.  

The DOE results first support their contention that a period of 14 is too long.  On the other hand the 

results also suggest that a modification to a period of 3 or 4 could produce significantly greater profits. 

The regression analysis also suggests that the RSI period (Factor5) and the VIX RSI setting (Factor2) are 

interrelated.  A future study might produce better results that incorporated separate RSI periods for the 

VIX versus the SPY.    



 

Table 1 

trial Factor 1 Factor 2 Factor 3 Factor4 Factor5 Profit/Loss 

1 97 99 35.96 73.00 6 36963.78 

2 250 92 41.30 95.00 3 442391.29 

3 50 91 19.79 76.65 3 152935.57 

4 185 80 22.95 52.25 6 36588.3 

5 71 100 27.41 43.89 4 -2605.81 

6 57 80 45.00 35.00 2 -102887.56 

7 250 100 45.00 95.00 6 31972.4 

8 164 100 42.21 36.16 2 33763 

9 161 90 43.92 78.53 2 82352.07 

10 250 100 45.00 95.00 2 151022.55 

11 50 80 15.00 95.00 2 96021.45 

12 184 92 22.70 35.00 2 -63011.38 

13 53 82 42.33 59.02 5 64807.41 

14 250 100 15.00 37.29 3 11373.27 

15 50 82 44.96 95.00 3 551780.73 

16 152 97 15.00 59.90 5 33534.78 

17 250 85 22.46 56.48 4 135522.19 

18 235 85 36.54 78.85 6 -499936.44 

19 250 96 34.10 61.45 2 140999.78 

20 187 80 15.00 80.02 3 268324.76 

21 237 100 45.00 71.97 4 4321.72 

22 136 100 18.07 35.00 6 0 

23 59 95 31.53 95.00 2 51648.44 

24 103 84 35.58 35.00 6 59420.6 

25 69 82 26.76 95.00 5 162501.49 

26 243 92 15.00 78.90 2 255643.5 

27 250 80 15.00 95.00 6 24722.76 

28 91 80 31.09 75.54 2 11636.23 

29 176 100 37.78 95.00 4 6470.07 

30 153 80 45.00 90.90 5 316046.77 

31 50 87 34.87 42.42 2 -111804.83 

32 250 96 15.62 49.12 6 0 

33 176 93 21.89 93.05 6 31972.4 

34 250 80 45.00 35.00 6 78705.39 

35 192 80 38.38 43.16 3 167178.97 

36 95 84 15.00 78.55 6 0 

37 50 99 15.00 35.00 2 -48289.34 



38 106 84 15.00 49.51 2 -28863.42 

39 50 100 45.00 65.19 2 43134.47 

40 50 100 45.00 35.00 6 0 

41 50 80 19.21 35.00 4 29610.96 

42 250 80 45.00 78.26 2 143786.78 

43 90 93 45.00 36.94 3 46744.44 

44 50 80 45.00 95.00 6 -499958.08 

45 209 83 26.16 95.00 2 309655.71 

46 180 91 45.00 49.67 6 21889.9 

47 148 100 20.01 72.07 2 78568.21 

48 50 100 15.00 95.00 6 0 

49 250 87 45.00 35.00 2 -56868.06 

50 50 93 21.90 46.99 6 0 

51 250 100 21.25 87.74 5 0 

52 110 95 15.00 95.00 3 368372.77 

53 250 80 15.00 35.00 2 -9787.38 

54 195 85 15.00 35.00 5 15092.02 

55 230 97 35.75 35.34 5 30531 

56 63 92 45.00 91.07 5 122935.42 

57 150 90 30.00 65.00 4 123083.67 

 

 

  



Table 2: 

term coefficient t-statistic 

Constant -22.635 -0.128 

B(1) -2.852 -0.039 

B(2) 61.490 0.913 

B(3) -35.665 -0.510 

B(4) -14.282 -0.210 

B(5) 16.728 0.109 

B(1)^2 11.897 0.356 

B(1)*B(2) 0.144 0.006 

B(1)*B(3) -2.576 -0.125 

B(1)*B(4) -0.540 -0.025 

B(1)*B(5) -3.369 -0.092 

B(2)^2 -4.123 -0.119 

B(2)*B(3) -10.342 -0.459 

B(2)*B(4) -21.883 -0.890 

B(2)*B(5) -33.861 -1.008 

B(3)^2 3.898 0.109 

B(3)*B(4) 1.006 0.046 

B(3)*B(5) 18.065 0.531 

B(4)^2 -5.698 -0.161 

B(4)*B(5) 13.498 0.390 

B(5)^2 -1.215 -0.029 

B(1)^3 7.722 0.261 

B(1)^2*B(2) 2.411 0.140 

B(1)^2*B(3) -0.076 -0.005 

B(1)^2*B(4) 0.783 0.045 

B(1)^2*B(5) -3.491 -0.449 

B(1)*B(2)^2 2.707 0.139 

B(1)*B(2)*B(3) 2.752 0.242 

B(1)*B(2)*B(4) -0.209 -0.017 

B(1)*B(2)*B(5) -0.150 -0.027 

B(1)*B(3)^2 1.107 0.054 

B(1)*B(3)*B(4) 1.432 0.133 

B(1)*B(3)*B(5) 0.262 0.050 

B(1)*B(4)^2 9.460 0.513 

B(1)*B(4)*B(5) 0.160 0.029 

B(1)*B(5)^2 0.270 0.059 

B(2)^3 -7.231 -0.253 

B(2)^2*B(3) 0.009 0.001 



B(2)^2*B(4) -10.495 -0.558 

B(2)^2*B(5) 0.523 0.062 

B(2)*B(3)^2 -1.285 -0.065 

B(2)*B(3)*B(4) -1.397 -0.119 

B(2)*B(3)*B(5) 2.479 0.464 

B(2)*B(4)^2 -5.851 -0.323 

B(2)*B(4)*B(5) 5.222 0.924 

B(2)*B(5)^2 4.354 1.043 

B(3)^3 5.148 0.183 

B(3)^2*B(4) 5.112 0.263 

B(3)^2*B(5) -0.043 -0.005 

B(3)*B(4)^2 5.378 0.297 

B(3)*B(4)*B(5) -1.224 -0.230 

B(3)*B(5)^2 -2.429 -0.580 

B(4)^3 11.868 0.421 

B(4)^2*B(5) 2.364 0.279 

B(4)*B(5)^2 -2.287 -0.530 

B(5)^3 -0.193 -0.056 
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