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PREFACE: LIFT OFF 

Any sufficiently advanced  technology is 
indistinguishable  from  magic. 

"Sm ARTHUR c. CLARKE 

The advances  made in computer technology during the past two 
decades have been dramatic. The computer power to which we 
have  access  today is far  greater  and more powerful than  that 
which was  available to the  entire national defense system just 
30 years ago. Software  for  traders,  however, has not kept pace. 
Most of the trading tools available  today are neither different  nor 
more complex than  the simple pencil-and-paper calculations 
that can  be  achieved through the use of mechanical adding 
machines. True, these calculations are now  made with blinding 
speed  and  presented in colorful  and  eye-grabbing  displays, but 
the power  and usefulness of these procedures  have not changed. 
If anything, the relative power of the calculations has dimin- 
ished because the increased  speed of information exchange 
and  increased market capitalization have caused fundamental 
shifts in  the technical character of the market. These shifts 
include increased volatility and shorter periods  for the market 
swings. 

Rocket Science for Traders promises to revolutionize the  art 
of trading by introducing modern digital signal  processing to the 
playing  field. The application of digital  signal  processing  offers 
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the advantage of viewing  old  problems  from a new  perspective. 
The new  perspective  gained  by digital signal  processing  has  led to 
the birth and  development of some  profoundly  effective  new  trad- 
ing  tools. The advances in new  trading  tools,  along with  the con- 
tinuing advancements in hardware  capabilities, virtually ensure 
the continued application of digital  signal  processing in  the 
future. The trader  who masters the fundamental concepts of digi- 
tal signal  processing,  therefore,  will  find  great  advantage when 
approaching the volatile market of the twenty-first century. 

A brief introductory chapter is followed by Chapter 2, in 
which the philosophical bases  for  Trend  Modes  and  Cycle 
Modes are established through a look at solutions to a con- 
strained version of the Random  Walk  problem.  Specific indica- 
tors that target  each of these modes are developed later in  the 
book. Chapters 3 and 4 include observations about conventional 
technical analysis tools, with special attention given to some of 
their common pitfalls. 

The basis of efficient  digital signal processing i s  the use of 
complex arithmetic for all computations. Since  complex  vari- 
ables are often completely foreign to most traders, a brief review 
and introduction to phasors are provided in Chapter 5. The com- 
mon waveforms with which everyone is familiar are  called ana- 
lytic waveforms. These are converted into complex  variables 
using the Hilbert Transform, as described in Chapter 6. The abil- 
ity of the Hilbert Transform to  meet  the requirements of traders 
means little if the system is  not used  alongside a measurement 
of the market cycle.  Several  different algorithms for  cycle meas- 
urement are therefore described  and  compared in Chapter 7. 

The Homodyne  Discriminator  proves  itself to be the preferred 
algorithm  and  is thus used throughout the remainder of the book. 
Chapters 8 through 12 develop unique indicators  from the com- 
plex  variable  waveforms. These include the Signal-to-Noise  Ratio 
(which indicates when trading  should be  avoided), the Sinewave 
Indicator (which anticipates Cycle  Mode turning points without 
creating  false  whipsaw  signals in  the Trend  Mode), an Instanta- 
neous  Trendline,  and the logic to automatically ascertain the cur- 
rent t r a m  mode of the market. These concepts  are then 
combined to form a profitable automatic trading  system. 
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The use of digital signal processing  for trading almost always 
involves the employment of filters. Digital filter transfer re- 
sponses  are most efficiently  described  using Z Transforms, which 
are described in Chapter 13. The most common Finite Impulse 
Response  (FIR) and Infinite Impulse Response  (IIR) filters are 
described in Chapters 14 and 15, including equations to com- 
pute filters on the fly,  as well as tabulated coefficients  for more 
static applications. More  specialized filters are described in  the 
following chapters. These include smoothing filters that have 
the lag  removed (Chapter 16) and a unique MESA Adaptive  Mov- 
ing Average ( " A )  (Chapter 17). We introduce the Ehlers fil- 
ter, one of the most flexible nonlinear filters available,  and one 
that has the potential to be a true market model (Chapter 18). 

The use of Fast  Fourier Transforms (FFT) is often advocated 
by those who ignore mathematical constraints as a way to meas- 
ure the market spectra. Chapter 19 is dedicated to explaining 
why traders should avoid FFTs in market analysis. This chapter 
alone will save the reader  money  by illustrating that FFTs are 
inappropriate tools for  trading.  Novel  and unique concepts are 
presented in  the following chapters. The theoretically optimum 
predictive filter is described  and  defined in terms of the phasor 
diagram. 

This concept  produces a moving  average with no lag  and 
thus has an ability to generate trading signals that are very  close 
to each turning point in  the market. When filtering alone is 
inadequate to isolate the signals  from the noise, unique displays 
enable visual interpretation that is well outside the bandwidth 
of electronic filters. The procedure to plot the signal phasor is 
provided  for just this purpose. 

Rocket  Science for Traders concludes with approaches to 
make conventional indicators, such as the RSI, Stochastic, and 
CCI, adaptive to current market conditions rather than using 
static parameters. Specific methods are given  for these indica- 
tors. Additionally, the general concepts presented for these can 
be  extended to apply to any existing static indicator. 

Many of the Qgital signal processing techniques described in 
this book  have  been known for many years  and  used in  the phys- 
ical sciences. The Maximum Entropy  Spectral  Analysis  (MESA) 
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algorithm was  originally  developed by geophysicists in their 
exploration for oil. The  small  amount of data from seismic 
exploration demanded a solution using a short amount of data. I 
successfully  adapted this approach and popularized it for the 
measurement of market cycles.  More  recently, the use of digital 
signal  processing has exploded in consumer electronics, making 
devices such as CDs  and DVDs possible. Today, complete radio 
receivers are constructed without the use of analog components. 
As we  expand its use by introducing it to  the field of trading, we 
see that digital signal processing is an exciting new field,  perfect 
for technically oriented traders. It allows us to generalize and 
expand the use of many traditional indicators, as well as achieve 
more precise computations. My objective is to expose  you to 
these techniques to make your trading more profitable and more 
pleasurable. 

Traders who have  never studied mathematics or who have 
let  their  math  skills languish may find some of the concepts pre- 
sented to be  foreign  and  difficult to grasp at  the first reading. 
Since many of the concepts are interrelated, a deeper under- 
standing may come from  rereading this book  several times. 

JOHN F. EHLERS 
Santa Barbara, California 
lune 2001 
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INTRODUCTION TO 
THE  SCIENCE OF 

DIGITAL SIGNAL  ANALYSIS 
Computers are worthless. 

They can only give you answers. 

"PABLO PICASSO 

Make no mistake about it. This is a book  for traders about digi- 
tal signal processing. It  is  not a book  for  engineers about tradmg. 
At first glance, the reverse  may seem to be true for many traders 
because the subject matter is on the cutting edge of technology 
and the mathematics behind this technology can be more ad- 
vanced than  that encountered in school.  Recognizing that many 
traders want  to simply use the technology rather than become 
schooled in it, the information in  this book is aimed at several 
levels. We provide the rationale, derive the equations, and  pro- 
vide the computer code to  implement the techniques. With this 
approach,  our results can be used in applications ranging  from a 
cookie-cutter indicator operating within Tradestation or  Super- 
Charts  to the applications that are springboards  for still more 
advanced  technology. 

It is common for technical analysis indicators to be  described 
in terms of a fixed  period of time. For example, the standard 
length used  for a Relative Strength Indicator (RSI) is the last 14 
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2 Rocket Science for Traders 

price  bars. One often hears about a five-day Stochastic or a 10/30- 
day  moving  average system. Since the market is continuously 
changing, there is absolutely no reason to use static periods in 
your indicators. Choosing the correct time period is essential to 
using traditional indicators to their maximum potential. While 
deriving the tools with which  to  make indicators adaptive,  you 
will see novel indicators that surpass the traditional ones in 
accuracy  and  performance. 

Digital signal processing is an exciting new field  for techni- 
cally oriented traders.  Many of the indicators that have  been 
used  previously can now be generalized,  and the computations 
can  now  be  accomplished more precisely using digital methods. 
It  is interesting to  note that many of the digital  signal  processing 
techniques I describe  have  been known for many years  and  used 
in  the physical  sciences. My objective is to expose  you to these 
techniques to  make your trading more profitable and more plea- 
surable. 

Many  physical systems involve the use of analog  signals that 
are represented as continuous time functions. There is an ampli- 
tude associated with the signal at each instant in time. There is 
an  infinite number of amplitude values that  the signal  may 
assume. However, if the signal is frequency bandlimited, there 
is no significant energy  above the cutoff frequency.  Since  energy 
is required in any physical system to change amplitude, this  im- 
plies that  the signal cannot change amplitude instantaneously. 
Therefore, points closely  spaced in  time  will have relatively 
similar amplitudes. There are several  ways in which a signal can 
be represented other than as a continuous analog  signal. One 
method is  to quantize the amplitude and  hold that value until 
the next quantization is performed. There are a finite number of 
amplitudes, but the function is continuous in time.  This is in 
contrast to a discrete time signal, which has continuous ampli- 
tude values but is only defined at  lscrete instants in time. As 
with analog  signals, there is an infinite number of levels, but 
there are only a finite number of points in time. If a signal is 
quantized in both amplitude and time, it is called a digital  sig- 
nal. The data we  deal with  in trading are digital signals  from 
sampling that is done in uniform periods of time  (once per  day, 
once  per  hour, etc.). 
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A discrete time signal  can  be obtained from an analog signal 
by multiplying it by a periodic impulse train. The sampling sig- 
nal can  be  expressed in  the  time domain as 

s ( t )  = 1 6(t - kT) 

where 6 = the impulse function 
T = period between impulses 

Using  Fourier  theory, multiplication in  the frequency  domain is 
synonymous with convolution in  the  time domain. In other 
words, multiplying signals in  the  time domain is the same as 
heterodyning, or  mixing, the signals in the frequency  domain. 
The impulse train has an infinite number of harmonics at fre- 
quencies that are the reciprocal of the period between pulses. 

The effects of sampling in the frequency domain are illus- 
trated in Figure 1.1. The continuous bandlimited signal F ( f J  is 
shown in  the top segment (a) as  having a frequency rolloff at 
some point. In the middle segment (b), the sampling impulse 
waveform S(fJ has a monochromatic spectral line at  the sam- 
pling  frequency fs and all its harmonics. When the sampling is 
performed on the bandlimited signal, the convolved  waveform 
is shown in the bottom segment (c). Not only is the original  band- 
limited continuous signal present, but  this same signal  also 
appears as the upper  and  lower  sidebands of each sampling fre- 
quency harmonic. Since the lower  sideband of the sampling 
frequency can extend into  the original  baseband, the bandlimit- 
ing must occur  below half the sampling frequency. Half the sam- 
pling frequency is called the Nyquist  frequency because the 
Nyquist Sampling Theorem states  that there must be at least 
two samples per  cycle of the signal to avoid  aliasing. 

Aliasing is a form of distortion. It results from sampling a 
continuous signal  less than twice per  cycle. This distortion can 
be seen in  the two waveforms  depicted in Figure 1.2. Both the 
upper trace and the lower trace have identical sampling points, 
denoted by the dots. The samples in  the top trace appear to be 
valid.  However, these same samples plot out the sine wave of 
the lower  trace, where there are  four samples per  cycle. The dif- 
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Figure 1.1. Sampled data in the frequency domain. 

ference is explained  by aliasing in  the top trace. The samples are 
taken at three-quarters of a cycle apart, or two samples every 
one-and-a-half  cycles. This does not meet the Nyquist criterion 
of at least two samples per  cycle. 

In trading, we can scale all  time frames to each  bar.  Each  bar 
is  a sample.  Therefore, to  meet the Nyquist criterion, the ab- 
solute  shortest cycle  we can consider is a 2-bar  cycle. As a prac- 
tical matter, 5- and  &bar  cycles should be  considered the shortest 
useful cycles. 

If the input signal is insufficiently bandlimited, the aliased 
frequency components are folded  back into  the sampled  base- 
band as false  signals  and noise. For this reason, data should 
always  be smoothed before any other operation is performed. 
Otherwise, the undesired signal components will have an ad- 
verse  effect on your computations. Smoothing removes the 
high-frequency components, precluding these components from 
being  folded  back into  the analysis bandwidth. 
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I I 

l I 

L I 

Figure 1.2. Signals must be sampled at least twice per cycle. 

The complex  waveshapes that describe  traders’ charts can 
be  considered  as synthesized from more primitive waveshapes, 
adding  or subtracting from  each other depending  on their rela- 
tive phases. These kinds of waves are called coherent, meaning 
the amplitude at any given position can be determined by a vec- 
tor addition of the amplitudes. The waveshapes are analogous to 
voltage in electric circuits. When  we measure the strength of 
the signals,  we  prefer not  to use the amplitude of the wave  as a 
measure because it is dependent on the location, or  phase, 
within the wave.  Rather,  power is the preferred measure of 
strength. Power is proportional to waveform amplitude squared, 
just as the power a 100-W lightbulb consumes from a 115-V cir- 
cuit  is proportional to  the voltage  squared. In digital  signal 
analysis, we are mostly concerned with relative power,  or  power 
ratios. It is convenient to express these power ratios in terms of 
decibels. 

As an historical aside, one decibel  was the power lost in a 
telephone signal  over one mile of wire (the name was  derived 
from  Alexander Graham Bell). A decibel is one-tenth of a bel. 
The bel is the logarithm base 10 of the power ratio. Thus, a deci- 
bel is 10*L0g10(P2/P1), and is abbreviated as dB. Working with 
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decibels simplifies understanding signal  levels both because 
large  power ratios are compressed into a smaller range of num- 
bers due to  the logarithm and because  adding  decibels  (i.e.,  add- 
ing logarithms) is easier than carrying out  multiplication in your 
head. For example, 2*2 = 4 can also  be  performed with loga- 
rithms: Log(2) = 0.3, so that Log(2) + Log(2) = 0.6, which is Log(4). 
Memorizing some key ratios makes the identification of relative 
power instantly recognizable. A power ratio of 2 translates to +3 
dB. If that ratio is ?4 rather than 2, then it translates to -3 dB. 
That is, the reciprocal of the power ratio is the same absolute 
value of decibels, but the sign is reversed. A ratio smaller than 1 
(but necessarily  greater than 0) is always  expressed in negative 
decibels. If we double the power, that  is 3 dB. If we  double it 
again so that  the power is 4 times the original, that  is 6 dB. Dou- 
bling still again to get 8 times the original  power,  we  add another 
3 dB to reach a level of 9 dB. Since we have a logarithm base 10, 
a power ratio of 10 is 10 d B ,  and a power ratio of 100 is 20 dB, and 
so on. Consider this  to further illustrate the use of decibel: If a 
filter has half the power coming out of it as was entered, the out- 
put power is -3 dB. The filter is said to have a 3-dB loss. If a sim- 
ilar filter is placed at  the  output of the first, the  net  output power 
from the composite circuit would  be -G dB. 

The measurement -3 dB is usually a critical point for a filter. 
This half-power point in the filter response  occurs when the 
wave amplitude is 0.7 relative to  its maximum value. This  is  true 
because 0.7*0.7 = 0.5, the half-power ratio. The critical point in 
the filter is often called the cutoff frequency because  frequency 
components beyond the cutoff  frequency are attenuated  to a 
greater  degree  and  frequency components within  the cutoff  fre- 
quency are attenuated very little. To simplify, think of the filter 
as having a stone-wall response. In this analogy,  frequencies 
below the cutoff  frequency are not  attenuated and frequencies 
above the cutoff  frequency are not allowed to pass through the 
filter. 

EasyLanguage is currently the most popular computer lan- 
guage  for traders. Thus, I use this system to generate computer 
codes.  EasyLanguage is a dialect of Pascal, containing special- 
ized  keywords unique to trading.  Because it reads almost like 
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English,  EasyLanguage is almost effortless to understand. It is 
also easy to translate to other computer languages.  When trans- 
lating, the reference convention must be  understood. The Easy- 
Language assumption is that all computations are done with 
reference to  the current bar.  For example,  Close means the clos- 
ing  price of the current bar. If there is a reference  associated with 
that parameter, it is displayed in square brackets and means the 
number of bars  back to which it refers. For example,  Close[3] 
refers to  the closing  price 3 bars  ago. Zero can  be  used  as a refer- 
ence,  and has the same meaning as the current bar without any 
reference (there  is no reference into  the  future). As a further 
example, a two-day momentum is written as Momentum = 
Close - Close[2];.  Each  completed line of code must  terminate in 
a semicolon. For clarity, I always write  out the generic  descrip- 
tion of an action rather than relying on a more esoteric Trade- 
Station function call. As a result, the computer code  presented 
should be easily translated to BASIC,  C+, or  even an Excel 
spreadsheet. 

Key Points to Remember 

This book can be  read at several  levels,  ranging  from a broad 
perspective  overview to detailed computer coding. 
Novel  and unique indicators are made  possible by the math- 
ematical techniques to be introduced. 
Even conventional indicator performance can be enhanced 
by making them adaptive to current market conditions. 
Time scales of financial data can  be  dealt with on a per-bar 
basis. The absolute time scale of the data is irrelevant for 
computational purposes. 
Workmg with sampled data is distinctly different  from work- 
ing with continuous information. Sampled data should al- 
ways be smoothed to avoid erratic signals. 
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Chapter 2 

MARKET MODES 
Chaos  often  breeds life, when order  breeds habit. 

"HENRY BROOKS h m s  

The whole point of technical analysis is  to find a way to exploit 
the inefficiency of the market for gain. The general objective 
of the market is  to provide accurate prices  for asset allocation. 
That is, investors can  choose strategies that allow prices to fully 
reflect all available information at any time. Such a market (a 
market in which prices  always fully reflect  available informa- 
tion) is called  efficient. Much research has been  done to prove 
that  the market is indeed  efficient.  However, the fact that there 
exists a number of traders who are continuously successful is 
adequate proof that markets are not necessarily completely effi- 
cient. The failure of the efficiency hypothesis in several  cases is 
sufficient evidence to invalidate the hypothesis itself. 

Classical efficient market models are often concerned with 
the adjustment of security prices to three information subsets. 
Weak form tests comprise the first subset, in which we are sim- 
ply  given the historical prices. The second subset is semistrong 
form tests that concern themselves with whether prices  effi- 
ciently adjust to other publicly  available information. Strong 
form tests, the third subset, are  concerned with whether in- 
vestors have monopolistic access to any information relevant to 
price formation. The general  conclusion, particularly for the 
weak form tests, is that  the markets can  be only marginally  prof- 
itable to a trader. In fact,  only the strong form tests are  viewed  as 
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benchmarks against deviations from market efficiency. These 
strong form tests point to activities such as insider trading and 
the market-making function of specialists. 

The efficient-markets-model statement that  the price fully 
reflects  available information implies that successive  price 
changes are independent of one another. In addition, it has usu- 
ally  been assumed that successive changes are identically dis- 
tributed. Together, these two hypotheses constitute the Random 
Walk Model, which says that  the conditional and marginal 
probability distributions of an independent random variable are 
identical. In addition, it says that  the probability density func- 
tion  must be the same for all time.  This model is clearly  flawed. 
If the mean return is constant over time, then  the  return is inde- 
pendent of any information available at a given time. 

I assume that there is  an adequate number of traders in- 
volved in making the market  that a statistical analysis involving 
a Random  Walk is appropriate. There must be  several constraints 
to such a Random  Walk. The first constraint is  that  the prices 
be constrained to one dimension-they can only go up or  down. 
The second constraint is that  time  must progress monoton- 
ically. 

I have formed  my philosophical basis of market action from 
extensive work using constrained Random  Walks in the physi- 
cal  sciences.’ The expression of such a Random Walk is  that of a 
drunkard moving  on a one-dimensional array of regularly  spaced 
points. At  regular intervals, the drunkard flips a coin and makes 
one step to  the right or  left,  depending  on the outcome of the 
coin toss.  At the end of n steps, he can be at any one of 2n + 1 
sites, and the probability that  he  is  at any site can be calculated. 
Let the distance between the points on the lattice be U, and let 
the  time between successive steps be AT If AL and AT are 
allowed to  shrink to zero in such a way that (Uj2/AT remains 
constant to  the diffusion constant D, then  the equation govern- 
ing the distribution of the displacement of the Random  Walker 
from his starting point is 

‘Weiss, G. H., and R. J. Rubin. “Random  Walks:  Theory  and  Selected 
Applications.” Advances in Chemical Physics 52 [ 1982): 363-505. 
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This rather famous partial differential equation is called the Dif- 
fusion  Equation. The function P(x,t) can  be interpreted in two 
ways. It can either be taken  to express the probability density or 
the concentration of diffusing matter at position x at  time t .  Fol- 
lowing the latter interpretation, it can,  for  example,  describe the 
way heat flows  up the stem of a silver  spoon when placed in a 
hot cup of coffee. 

To better understand the theory of diffusion, imagine the 
way a smoke plume leaves a smokestack. Think about how the 
smoke rises compared to how a trend carries itself through 
the market. A gentle breeze determines the angle to which the 
smoke, or trend, is bent. The widening of the smoke plume 
represents the probability density of the smoke particles as a 
function of distance from the smokestack. This widening is anal- 
ogous to the decreased  accuracy of the prediction of future trend 
prices further into  the future. 

The formulation of the Drunkard's Walk has no property 
that can be  regarded  as the analog of momentum. A more realis- 
tic model of a physical  object's motion needs to account for 
some form of memory-we need to know where the object  came 
from and the likelihood it will continue to move in  the same 
direction. The simplest modification of the Random Walk is  to 
allow the coin toss to determine the persistence of motion. In 
other words, with probability p the drunkard makes his next 
step in  the same direction as the last one,  and with probability 
l-p he makes a move in  the opposite direction. The ordinary 
Drunkard's Walk occurs when p = !h, because either move is 
equally likely. The interesting feature of the modified Drunk- 
ard's  Walk is that as the distance between the point and the  time 
between steps decreases, one no longer obtains the Diffusion 
Equation, but rather the following equation: 

S2P 1 SP S2P 
6t2  T  6t 

-+""-c2- 
6x2 

in one dimension, where T and c2 are constants. This  is another 
famous partial differential equation called the Telegrapher's 
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Equation. This equation expresses the idea that diffusion occurs 
in restricted regions, such that x2 c c2t2. That is, the position 
must be less than  the velocity of propagation c multiplied by 
time t .  More important, the Telegrapher’s  Equation  describes 
the harmonic motion of P(x,t) just as surely as it describes the 
electric wave traveling down a pair of wires. 

Harmonic motion is ubiquitous. It is the natural response to 
a disturbance on any scale ranging  from the atomic to the galac- 
tic. You can demonstrate the effect  by  holding a ruler over the 
edge of a table,  bending the ruler down,  and then releasing it. 
The resulting vibration is harmonic motion. Alternatively, you 
can stretch a rubber band between your fingers, pull the band 
to one side,  and then release it. The oscillations of the rubber 
band  also constitute harmonic motion. Since there are plenty of 
opportunities for market disturbances, it is only a small stretch 
to extend the solution to the Drunkard’s  Walk  problem  from 
physical phenomena and use it to describe the action of the 
market. 

The Drunkard’s Walk solution can  describe two market con- 
ditions. In the first condition, the probability is evenly  divided 
between stepping to  the right or the left, resulting in  the Tkend 
Mode, which is described  by the Diffusion  Equation. The second 
condition, the probability of motion direction is skewed, results 
in the Cycle  Mode, which is described  by the Telegrapher’s  Equa- 
tion. The difference between the two conditions can  be  as sim- 
ple  as the question that  the majority of traders constantly ask 
themselves. If the question is “I wonder if the market will go up 
or down?”  then the probability of market movement is about 
50-50, establishing the conditions for a Trend  Mode.  However, if 
the question is posed  as  “Will the trend continue?”  then  the 
conditions are such that  the Telegrapher’s  Equation  applies. As a 
result, the Cycle  Mode of the market can  be established. 

The Telegrapher’s  Equation solution also  describes the me- 
andering of a river. Viewed  as an aerial  photograph,  every  river 
in  the world meanders. This meandering is  not due to a lack 
of homogeneity in  the soil, but  to the conservation of energy. 
(You can appreciate that soil homogeneity is not a factor because 
other streams, such as  ocean currents, also meander in a nearly 
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homogeneous medium.) Ocean currents are not nearly as visible 
as  rivers and are,  therefore, not as familiar to  most of us. Every 
meander in a river is independent of other meanders, and are all 
thus completely random. If we were to look at all the meanders 
as an ensemble,  overlaying one on top of the other like a mul- 
tiple exposure  photograph, the meander randomness would also 
become  apparent. The composite envelope of the river paths 
would be about the same as the cross section of the smoke 
plume. However, if we are in a given  meander, we are virtually 
certain of the general path of the river  for a short distance down- 
stream. The result is  that  the river can be  described  as  having a 
short-term coherency but a randomness over the longer  span. 

River  meanders are like the cycles  we have in the market. 
We can measure and use these short-term cycles to our advan- 
tage if we  realize they can come  and go in  the longer term. 

We can extend our analogy to understand when short-term 
cycles  occur.  Rivers  meander in an attempt  to maintain a con- 
stant slope  on their way to the ocean. If the slope is too severe, 
the meander has the same effect as a skier who weaves  back  and 
forth across a slope to slow the descent. The flow of a river  phys- 
ically adjusts itself  for the purpose of energy conservation. If the 
water speeds  up, the width of the river  decreases to yield a con- 
stant flow volume. The faster flow contains more kinetic 
energy,  and the river attempts to slow it down by changing  direc- 
tion. At the same time, the river direction cannot change 
abruptly because of the momentum of the water’s  flow.  Mean- 
dering results. Thus, meanders  cause the river to  take the path of 
least resistance in  the sense of energy conservation. We should 
think of markets in  the same way. Time must progress  as surely 
as the river must flow to the ocean.  Overbought  and  oversold 
conditions result from attempts  to conserve the energy  of the 
market. This particular energy arises from the fear  and  greed  of 
traders. 

Again, it may  be useful to test the principle of energy  con- 
servation for  yourself.  Tear a strip about 1 inch wide  along the 
side of a standard sheet of paper about 11 inches long.  Grasp 
each  end of this  strip between the  thumb and  forefinger of each 
hand. Now  move  your hands toward one another. Your com- 
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pression is putting energy into  this strip, and its natural response 
can take one of four  modes. These modes are determined by the 
boundary conditions that you  force. If both hands are pointing 
up, the response is  a single  upward  arc,  approximating one alter- 
nation of a sine wave. If both hands are pointing down, the 
response is  a downward  arc. If either hand is pointing up and 
the other pointing down, the strip response to the energy input 
is approximately a full sine wave. These four lowest modes are 
the  natural responses  following the principle of conservation of 
energy. You can introduce additional bends in  the strip, but  a 
minor jiggling will cause the paper to snap to one of the four 
lowest modes, with the exact  mode  depending on the boundary 
conditions that you impose. The two full sinewave modes  are 
approximately the second harmonic of the two single alterna- 
tion modes. 

The market only has a single dominant cycle most of the 
time. When multiple cycles  are simultaneously present, they are 
generally harmonically related. This  is  not  to say that nonhar- 
monic simultaneous cycles cannot exist-just that they are rare 
enough to be discounted in simplified  models of market action. 
The general observation of a single dominant cycle tends to 
support the notion that the natural response to  a disturbance is 
monotonic harmonic motion. 

It is true  that if you are a hammer, the rest of the world looks 
like a nail. We must take care to recognize that  all market action 
is not  strictly described  by  cycles alone and that cycle tools are 
not always  appropriate. A more complete model of the market 
can  be  achieved  by  knowing that there are times when the solu- 
tion to the Telegrapher’s  Equation  prevails and times when the 
solution to the Diffusion  Equation  applies. We can,  therefore, 
divide the market action into  a Cycle  Mode  and a Trend Mode. 
By having only two modes in our market model,  we  can switch 
our  trading strategy back  and forth between them, using the 
more appropriate tool according to our situation. Since our digi- 
tal signal  processing tools analyze  cycles,  we  can establish that 
a Trend  Mode is more appropriate at any given time due to  the 
failure of a Cycle  Mode. 

There are many ways to analyze the market using technical 
analysis.  Regarding indicators, the preferred tools are moving 
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averages  or data smoothers for  Trend  Modes  and oscillator-type 
indicators for  Cycle  Modes.  In later chapters, we  develop supe- 
rior indicators for both market modes.  At this point, it is impor- 
tant  to understand that  the two modes of a simplified market 
model  have  been directly derived from solutions to  the  Drunk- 
ard’s  Walk problem. Keep asking yourself, “Will the market go 
up or  down today? ” and “I wonder if the trend will continue? ” 

Key Points to Remember 

A simplified  model of the market has a Trend  Mode  and a 

The market model is similar to a meandering  river. 
Both the Trend  Mode  and the Cycle Mode are derived  from 

Different technical indicators are appropriate  for  each mar- 

Cycle  Mode. 

the Drunkard’s  Walk. 

ket mode. 
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MOVING AVERAGES 
nend i s  not  destiny. 

“LEWIS MUMFORD 

Centuries ago  Karl Friedrich  Gauss  proved that  the average is 
the best estimator of the random variable.  He  derived the famil- 
iar bell-shaped probability density curve known as the Gauss- 
ian, or Normal, distribution. When the probability distribution 
of a random  variable is unknown, the Gaussian distribution is 
generally  assumed. In this bell-shaped  curve, the peak  value,  or 
the mean, is  the nominal forecast. The  width of the variation 
from the mean is described in terms of the variance. It is cer- 
tainly true  that  the average is  the best estimator for the market 
in  the case where the Diffusion  Equation (as described in Chap- 
ter 2) applies. The best estimate of the location of any smoke 
particle is the average  across the  width of the plume. This is 
probably why moving  averages  are  heavily  used  by technical 
traders-they want the best estimate of the random  variable. 

All moving  averages have two characteristics in common: 
They smooth the data and cause lag  because they depend on 
historical information for computation. By far the most serious 
implication for traders is  the induced lag.  Lag delays any buying 
or selling decision and is almost always a bad characteristic. 
Therefore,  averaging is typically a trade-off between the 
amount of desired smoothing and the amount of lag that can be 
tolerated. 

There are three popular  types of moving  averages. These are 

17 
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1. Simple  Moving  Average  (SMA) 
2.  Weighted  Moving  Average  (WMA) 
3. Exponential  Moving Average  (EMA) 

Each of these types of averages has its own respective merit, 
and there are times when any one of the three is the appropriate 
choice. The discussions in this chapter describe  each of the  three 
moving  averages so you  can make the comparisons  for  your own 
applications. 

Simple Moving Average 

An n-day simple average is formed by adding the prices of a secu- 
rity over n days  and  dividing  by n. Thus, the weighted  price for 
each  day is the real  price  divided by  n. The simple average 
becomes a moving  average by adding the next day’s weighted 
price to  the sum and  dropping off the weighted first day’s price. 
Thus, the simple average  moves  from  day to day. This  is the 
most efficient  way to compute a Simple  Moving  Average  (SMA). 

Another way to view an SMA is as an average of the data 
within a window. In this concept, the window  slides  across the 
chart, forming the moving  average  from  bar to bar, as shown in 
Figure 3.1. Figure 3.1 shows a 10-bar  window  and the moving 
average  formed  by this window. The average is plotted at  the 
right-hand side of the window,  causing the moving  average  lag. 
This  is necessary  because the window cannot accept  data into 
the future. So, when a moving  average is used in actual trading, 
the lag cannot be  overcome. Centering the moving  average  on the 
window is not helpful  for  trading  because future data would  be 
required to get the current value of the average.  Obviously, future 
data  are not available for the last bar  on the chart. 

The  static lag of an SMA can  be computed as a function of 
the window width. Consider the following  case  where the data 
have a price of zero at the left edge of the window. The price 
increases by one unit for  each subsequent bar, as shown in Fig- 
ure 3.2. The average  price is always the price at  the center of the 
window,  expressed mathematically at (n - 1)/2. The average is 
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Figure 3.1. A moving average  averages data within a moving 
window. 
Chart mated with  Tr&Station200Oi@ by Omega Research, Inc. 

plotted at the right-hand side of the window.  Since the price 
slope is  unity (rises vertically one unit for  each unit increase 
along the horizontal), the averaged  price at  the right-hand side of 
the window is effectively  lagging the price at the center of the 
window by (n - 1)/2 bars. This lag is simply unavoidable. An 
example of a 5-bar  window  average is shown in Figure  3.2. It  is 
clear in  this example that  the lag is two units, equal to (5 - 1)/2. 
As a trader,  you must make a trade-off  by  choosing between the 
amount of smoothing you want from  your  moving  average and 
the amount of lag  you  can tolerate. 

A thorough understanding of the impact of moving  average 
lag is absolutely crucial for  successful  trading. On the one hand, 
a wide  averaging  window  provides a very smooth moving  aver- 
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Figure 3.2. Computing the SMA lag. 

age.  However, such a moving  average is so sluggish in response 
that it may only be useful in working with the longest trends. A 
narrow  averaging  window, on the other hand,  does not provide 
much smoothing, so the average  may  be highly responsive but 
can  produce  whipsaw  signals due to inadequate smoothing. 
Approaching a moving  average  from the perspective of the fre- 
quency domain rather than from the  time domain can thus be 
useful and instructive. 

Assume the data comprise a theoretical sine wave  as shown 
in Figure 3.3. We can arrange our averaging  window to be any 
width we  choose. The  width of Window A in Figure 3.3 is 
exactly one half  cycle. If the window  were  narrower, then the 
average would not include all the data points in  the positive 
alternation of the sine wave,  and the average  would therefore be 
less sensitive. If the window  were  wider than a half  cycle, the 
average  would contain some negative  data points as  well  as all 
the data points in  the positive alternation. Thus, the average 
would also be less sensitive. Figure 3.3 shows the half-period 
moving  average of a sine wave. The peak value of this moving 
average  occurs at  the right-hand side of Window A because  Win- 
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dow A contains only the positive data points in  the sine wave. 
As we move the window to  the right, the moving  average 
decreases in amplitude. Reaching  Window B, the moving  aver- 
age is zero at  the right-hand edge because  Window B contains 
exactly  as many negative data points as positive data points, 
causing the average to  sum  to zero. Continuing to move the win- 
dow to  the right, we arrive at Window  C. The moving  average at 
Window C is maximum negative  because  Window C contains 
only negative data points. The moving  average is created  by slid- 
ing the window  across the entire data set. 

Note that  the half-period SMA of a sine wave is another 
sinusoid (waves that look like sine waves),  delayed  by a quarter 
cycle.  Drawing  from our previous  knowledge of the lag of an 
SMA, we can assert that  the lag is half the window width, 
expressed in fractions of a cycle  period  or in degrees of phase. A 
quarter-cycle SMA will lag the price by an eighth of a cycle. This 
is  the equivalent of saying that if the averaging  window i s  90 
degrees  wide, the resulting SMA lag will be 45 degrees. 

When the market is in a Cycle  Mode, it is more important  to 
think in terms of the phase shift an SMA will induce  rather  than 
in terms of the number of bars of lag that it will cause. For exam- 
ple, a 2-bar  lag is almost inconsequential for a 40-bar 
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Figure 3.3. Half-cycle SMA of a sine wave. 
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However, this same 2-bar  lag is a full quarter-of-a-cycle  phase 
shift for an 8-bar  cycle. In trading, it is  important  to always 
consider the phases in relative  terms, particularly when deal- 
ing with shorter cycles. For this reason, it is often preferable 
to continuously adapt an SMA window to be a fraction of the 
measured market cycle rather than using a fixed  window width. 
This  adaptation enables the SMA to provide the same reac- 
tion  to price movement regardless of the  time period of the dom- 
inant cycle. 

If we increase the window width  to include a full cycle,  as 
shown in Figure 3.4, we have a very interesting case  for the 
SMA. Examination of Figure 3.4 shows that  in a pure cycle, 
when the window width is exactly one cycle, there are as many 
data points above the mean as there are  below it. Therefore, the 
SMA is exactly  zero  for this special  case. We use this phenome- 
non later to create the Instantaneous Trendline after we have 
measured the dominant cycle. By adjusting the average to have a 
window  whose width  is exactly the measured dominant cycle, 
we  cancel out  the dominant cycle  completely.  Since our simpli- 
fied market model consists of a Trend  Mode component and a 
Cycle Mode component, we are left with only the Trend  Mode 
component after the dominant cycle component has been re- 

Window D 

Figure 3.4. The  average of a full-cycle SMA is zero. 
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moved. The Instantaneous Trendline differs  from an SMA only 
in  the respect that  the window width can  vary  from  bar to bar. 
Since the window width is always a full cycle  period  for this 
indicator, the lag of the Instantaneous Trendline is a half  period 
of the dominant cycle. 

The SMA is also identically zero  for a pure sine wave when 
the window width  is exactly an integer number of cycles  wide. 
This can be seen in Figure 3.5, in which the window width  is 12 
bars.  Figure 3.5 is attained by changing the frequency  applied to 
the fixed  12-bar-wide  window. The results are plotted after being 
normalized to the Nyquist frequency, which is exactly half the 
sampling frequency. For example, if the data being  used consist 
of daily  bars, then  the Nyquist frequency is 0.5 bars  per  day. 
Since the cycle  period  and the cycle  frequency are inversely  pro- 
portional, the period of the Nyquist frequency is 2 bars. The 
periods of those components that have an integer number of 
cycles within the 12-bar  window have been noted in Figure 3.5. 

The SMA window can be  viewed  as a transfer function that 
multiplies the data falling within the window by 1 and multi- 
plies all data outside the window by 0. This transfer response is 
a pulse in  the  time domain. Functions in  the  time domain are 
related to functions in  the frequency  domain  by the Fourier 
Transform, as discussed in Chapter 1. A derivation of Fourier 
Transforms is beyond the scope of this book, but  is covered in 

Figure 3.5. The  transfer  response  of  a  12-bar SMA. 
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many fine texts. Without the derivation, I assert that  the Fourier 
Transform of the pulse in  the  time domain is 

SMA(Period) = Sin(n* W/P)/(n*W/P) 

where W = width of the SMA window 
P = period of the cycle  being  averaged 

The SMA is expressed in terms of wave amplitude. This  mathe- 
matical equation for the frequency domain response of an SMA 
exactly describes the function shown in Figure 3.5, except that 
the figure is plotted in decibels rather than wave amplitude. 
Each time  the ratio of the window width  to  the cycle  period is  an 
integer, the argument of the sine function is a multiple of Pi. 
Since the sine is exactly  zero  for arguments in multiples of Pi, 
the transfer  response has nulls for these cycle  periods. 

Figure 3.5 shows that low-frequency components (longer 
cycles) are allowed to pass through the SMA with only a small 
amount of attenuation, or size reduction. However,  high- 
frequency components (shorter cycles) are  greatly attenuated, 
even between the  null points. For this reason, an SMA falls into 
the category of low-pass filters. Low-pass filtering is exactly 
what is desired  from a data smoother. The smoothing comes 
about as a result of reducing the size of,  or attenuating, the 
amplitude of the higher-frequency components within the data. 

The frequency description of an SMA does not have a null  at 
zero  frequency.  At  zero  frequency, its period is infinite because 
cycle  period is the reciprocal of frequency.  Therefore, although 
the numerator goes to zero at zero  frequency, the denominator 
also  goes to zero. In the limit,  the ratio of the numerator to  the 
denominator is unity (a value of 1). We have previously  assigned 
some significance to  the cycle  period that is twice the window 
width (or more precisely, where the window width was half the 
cycle period). In this case, the numerator in  the SMA frequency 
description rises to become unity and the denominator is 42. 
The cycle  period that  is twice the  width of the SMA window is 
a workable and easy-to-remember demarcation between those 
cycle  periods that have small  attenuation and those that have 
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greater attenuation. For example, an SMA window width of 8 
bars  would  allow those cycle components of 16  bars  and  longer 
to pass nearly unattenuated and  would attenuate cycle  compo- 
nents whose  periods are shorter than 16  bars. 

We now  have the tools to  think about SMAs in both the  time 
and  frequency  domains. We know that  the 8-bar SMA has a lag 
of 3.5  bars  for trends. This same SMA gives a 16-bar  cycle a 90- 
degree  phase  delay  and a 32-bar  cycle a 45-degree  phase  delay. An 
8-bar  cycle component is removed  completely. This ability to 
think of the impact of averages in both the  time and  frequency 
domains will greatly improve your  probability of success as a 
trader. 

Weighted  Moving  Average 

A Weighted  Moving  Average  (WMA) is closely related to an 
SMA. The major  difference is the coefficients of the multiplier 
for the WMA are not constant across the window width. Rather, 
the coefficients are linearly weighted  across the window. There- 
fore, it follows that  the oldest data point is multiplied by  1, the 
next oldest data point is multiplied by  2, the third oldest data 
point is multiplied by 3, and so on until  the most recent data 
point is multiplied by n for an n-bar window width. The  sum of 
the data and coefficient products is divided  by the  sum of the 
coefficients to normalize the averaging  process. A 4-bar WMA 
code  can  be written as 

WMA = (4*Price + 3*Price[l] + 3*Price[2] + Price[3])/10; 

The transfer  response of the 4-bar WMA is shown in Figure 
3.6.  Since the data  are  weighted  across the window  width, there 
can  be no precise  averaging to zero  as there was with an SMA. 
Nevertheless, the WMA is also a low-pass  filter. The point  where 
the filter attenuation is 3 dB acts as our point of demarcation 
between the passband  and the stopband. In Figure  3.6, this occurs 
at a normalized  frequency of 0.25,  corresponding to an 8-bar  cycle. 
Cycles  longer than roughly 8 bars  are  passed  essentially unatten- 
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Figure 3.6. Frequency response of a 4-bar WMA. 

uated,  and  cycles shorter than 8 bars  are  reduced in amplitude to 
provide the smoothing. 

As with SMAs, smoothing of WMAs is improved by increas- 
ing the width of the window. For example, the transfer response 
of a 7-bar WMA is shown in Figure 3.7. In this case, the -3 dB 
point occurs at a normalized frequency of about 0.14, which is a 
period of approximately 14 bars.  Since the passband is linearly 
related to  the window width, the passband of a WMA is also 
twice its window width, as a reasonable approximation. 

A WMA offers a major  advantage  because it exhibits reduced 
lag in  its transfer response. The reduced  lag results from the 

Figure 3.7. Frequency response of a 7-bar WMA. 



Moving  Averages 27 

most recent data being the most heavily  weighted. The  amount 
of lag induced by an SMA or a WMA is  the center of gravity of 
the transfer response.  In the case of the SMA, the center of grav- 
ity  is  at  the center of the filter, resulting in a lag of ( n  - 1)/2 for 
an n-bar window width. The shape of the WMA coefficients 
forms a triangle across the width of the filter, resulting in  the 
center of gravity  being a triangle, one-third of the distance across 
the window. Thus, the lag of an n-bar WMA is ( n  - 1)/3. There- 
fore, in our examples, a 4-bar WMA has a lag of only 1 bar  and a 
7-bar WMA has a lag of only 2 bars. 

The weighting functions for a WMA do not necessarily have 
to be linear across the width of the window. The linear weight- 
ing is nonetheless very simple to compute, and the impact of lin- 
ear weighting is easy to remember by recalling the center of 
gravity of a triangle. Furthermore, the impact of other weighting 
distributions is too subtle for  trading  purposes.  Therefore, there 
is no compelling  reason to use any weighting factor other than 
linear. 

Exponential  Moving Average 

The moving  averages  discussed thus far are nonrecursive. That 
is, previous calculations are unnecessary to compute the cur- 
rent value of the moving  average. An Exponential Moving  Aver- 
age  (EMA) is different in a major  way  because it is recursive. 
The calculations use a fraction of the current price added to 
another fraction of the EMA calculation 1 bar  ago. The first 
fraction is usually called alpha (a) and can have a value between 
0 and 1. The two fractions must  sum  to unity, so the second 
fraction must have the value of 1 - a. The equation to compute 
an EMA is 

EMA = a*Price + (1 - a)*EMA[l]; 

The EMA becomes a moving  average  by  moving  from  bar to bar, 
from left to right,  across the price data. 

The  term exponential describes the way an EMA transfer  re- 
sponse  decays in amplitude relative to a single input. Imagine a 
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case in which the data set has an amplitude of l/a at one bar and 
an amplitude of 0 everywhere  else.  When the EMA is applied to 
this data, the first output from the filter is unity because there 
was  no  previous value for the EMA. On subsequent calculations, 
the price  value is 0, and so the sequence  of calculations is 

EMA(0) = 1 
EMA(1) = (1 - a) 
EMA(2) = (1 - a)*(1 - a) = (1 - a)' 
EMA(3) = (1 - a)'*(l - a) = (1 - 

EMA(n) = (1 - a). 

Since the quantity (1 - a) must be less than 1, the amplitude 
decays  as the exponent of each  succeeding calculation from an 
impulse input. Hence the name Exponential. In principle, a part 
of any data input remains in subsequent calculations although 
the contribution becomes  vanishingly small. This  attribute 
makes an EMA part of a general  class of filters called Infinite 
Impulse Response  (IIR) filters. IIR filters are distinct from the 
Finite Impulse Response  (FIR) filters, the class to which the 
SMA and WMA belong.  With FIR filters, the filter provides an 
output only so long  as the impulse falls within the window. 
Thus, in  this case, the response to an impulse is finite. 

It is instructive to examine the EMA response to a step func- 
tion. A step function has a series of constant values  and then 
jumps to another series of constant values. Assume the price has 
been 0 for a long time and then suddenly jumps up to a value of 
1 and maintains that value thereafter. On the first bar, the EMA 
will have a value of a. On the second bar, the value will be a + 
a*( 1 - a). On the third bar, the value will be a + a*( 1 - a) + a* 
(1 - a)', and so on. The EMA will gradually  approach the value of 
1. A common error in programming is  to  insert a value for a, 
such as  0.2, and insert another number for (1 - a), such as 0.9. 
The two terms  must  sum  to  unity or the recursive algorithm 
will lead to erratic results or might even  cause your computer to 
crash. You should always  check  your computer code to ensure 



Moving  Averages 29 

the two terms  sum  to unity. I am so cautious on this point that 
I assign the value a as a global  variable  and write  out the EMA 
equation in terms of a. By letting the computer do the work, I 
know the two  terms  must sum correctly. 

We can  easily  derive the lag of an EMA for the case of price 
that rises linearly at  the rate of one unit per  bar.  Recalling the 
form of the EMA calculation, 

EMA = a*Price + (1 - a)*EMA[ l]; 

We can assert that  the price on day d is d. If we assume the 
lag of the EMA is L, then  the current value of the EMA is (d - L).  
Furthermore, the previous EMA would have a value of (d - L - 
l), since price is rising one unit per  bar. Putting these values into 
the equation for the EMA, we obtain 

( d - L ) = a * d + ( l - a ) * ( d - L - 1 )  
= a * d + ( d - L ) - 1 - a * d + a * ( L + l )  

O = a * ( L + l ) - 1  
a= 1/(L + 1) 

This equation shows that we  can select an acceptable lag,  and 
from that lag, compute the alpha term of the EMA. For example, 
if we  can  accept a 3-bar lag resulting from the EMA, we would 
use a = 0.25. 

We can also relate an EMA to an SMA on the basis of their 
equivalent static lags. Recalling that  the lag of an SMA is (n - 
1)/2 for an n-bar SMA, we can substitute  this value of lag into 
the alpha calculation of the EMA as 

a = l/((n - 1)/2 + 1) 
= 2/((n - 1) + 2) 
= 2/(n + 1) 

This  is the relationship between an n-bar SMA and the alpha of 
an EMA that is quoted in most technical analysis books. 

A 12-bar SMA was  used to compute the transfer response 
shown in Figure  3.5. The equivalent alpha for an EMA is a = 
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Normalized Frequency  (Nyquist =,+) . , ,  , '  

Figure 3.8. Transfer response of an EMA with  delay equal to that of a 12- 
bar SMA. 

K 3  = 0.1538. The EMA transfer response  for this value of alpha is 
shown in Figure  3.8.  Comparing  Figures  3.8 and 3.5, it is obvi- 
ous that  the EMA normalized frequency passband is  much 
smaller than  the passband of the SMA. Therefore, an EMA pro- 
vides much more smoothing than  an SMA for an equivalent 
amount of lag. Alternatively, you can conclude that an EMA 
has much less lag than an SMA for an equivalent amount of 
smoothing. 

It is also interesting to compare a WMA to  an EMA on the 
basis of equivalent lag. The WMA that produced the transfer 
response  depicted in Figure 3.7 had a lag of 2 bars. For a 2-bar  lag, 
an EMA has a = 0.3333. The transfer  response of the EMA is 
shown in Figure  3.9. In this case, the EMA response is nearly 
equivalent to  the response of the WMA shown in Figure  3.7, 
with the WMA providing slightly better filtering. Furthermore, 
the WMA attenuates those components within the passband a 
little less than  the EMA for these same components. 

We  do not yet have the tools to compute the cycle  period of 
the passband demarcation in the frequency domain in terms of 
the alpha of the EMA, but we  can assert without proof that this 
relationship is 

P = -2n;/ln (l - a) 
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Figure 3.9. Transfer  response of an EMA with  delay  equal  to  that of a 7- 
bar WMA. 

where In is the natural logarithm. This relationship is proved in 
Chapter 13. Computation of the natural logarithm may  be 
unnatural  to most traders, so we simplify the equation with  a 
little mathematical slight of hand. We can approximate the nat- 
ural logarithm with  a truncated infinite series because (1 - a) 
will always  be  less than  unity as 

In (1 - a) = -a - az/2 - a3/3 - a4/4 . . . -an/n 

If a is sufficiently small, we  can  ignore all  but  the first two 
terms of the series. Substituting the truncated series for the nat- 
ural logarithm in  the passband  period calculation, we obtain 

P = 2n/(a + a2/2) 
= 4n/( a* (2 + a)) 

Key Points to Remember 

Regardless of their formulation, the purpose of moving  averages 
is  to  smooth the  input data. Their use is a trade-off between the 
amount of smoothing you  desire  and the  amount of lag  you can 
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SMA 
Lag is (n - 1)/2. 
Passband  period is  2*n. 
Phase  lag is a linear function of window width. 

WMA 
Lag is (n - 1)/3. 
Passband  period is 2*n. 
Gives the best filtering for a given amount of lag. 
Phase  lag is a linear function of window width. 

EMA 
a = 1/(Lag + 1). 
a = 2/(n + 1) when  compared to  an SMA. 
The a and (1 - a) terms  must always sum  to unity. 
Passband  period is -2x/ln( 1 - a) = 4n/(a*(2 + a)). 
Phase  lag is nonlinear due to recursion. 



Chapter 4 

MOMENTUM FUNCTIONS 
Backward, turn backward, 
oh  time in your flight. . . 

“ELIZABETH AKERS ALLEN 

I can’t  begin to tell you the number of traders that has asked me 
to make their signals  happen just one bar  sooner. The typical 
question is “Can’t  you just take a momentum?” In the most 
simple case, momentum  is just the l-bar difference in price. 
Momentum is deceiving  because it can give the illusion of antic- 
ipating turning points. h fact, there are cases in which some 
form of a momentum can increase the reaction time of an indi- 
cator. Even experienced technicians get lured into investigations 
in which advancing the indicator signal is impossible. For this 
reason, it is instructive to return  to basics  and thoroughly inves- 
tigate the properties of momentum functions. 

In the most general  sense, momentum functions simply take 
the difference of successive  values to sense the rate of change. 
Just as the sums forming the averages  are  analogous to integrals 
in  the calculus, momentum is analogous to derivatives in  the 
calculus. The impact of momentum can  be  appreciated by tak- 
ing successive momentums as we  do in Figure  4.1. 

In Figure  4.1, we analyze the successive momentums of a 
simple ramp function. The ramp is described  as  having a zero 
slope  before an  instant  in  time T and then breaking to a finite 
slope at  that  instant.  This  is a relatively smooth function. The 
first momentum of the ramp is a step. There is no change in  the 
slope of the ramp  before or after time T, so the step function is 
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RAMP FUNCTION 

t 2nd  derhrathre 

3rdderhrative 

(Acceleration) 

JERK 

Figure 4.1. Successive application of momentum shows that 
momentum can never anticipate an event. Also, momentum 
functions become  increasingly discontinuous. 

formed by instantly jumping  from an  initial slope of zero to  the 
finite value of the slope of the ramp. Taking the momentum of 
the step function, there is no change  except the instantaneous 
jump  from one value to another at  time ?: This forms an impulse. 
An impulse is a mathematical artifice that has infinite height 
and  zero width in such a way that  the area  of this “rectangle” is 
unity. Put simply, an impulse is a spike at  time T Next, taking 
the momentum of the impulse, we obtain a jerk. The jerk is 
formed by a two-step process. A positive impulse part of the jerk 
is first formed by traversing the leading edge of the impulse 
function. This is followed by the formation of the negative 
impulse part, which is due to traversing the trailing edge of the 
impulse function. 

Examination of Figure 4.1 identifies two undeniable truths 
about momentum functions. These are 

1. Momentum can never  lead the event. 
2. Momentum is always more disjoint (i.e., noisier) than  the 

original function. 

These truths are obvious when removed  from the distractions of 
a price chart. There must be a reason  why  traders  expect momen- 



tum to increase the pe~formance of their indicators. That reason 
is demonstrated in Figure 4.2, where the momentum of a pure 
sine wave is taken. Since momentum is the rate of change of a 
function, the momentum of the sine wave is maximum at the 

igure 4.2 where the sine wave crosses zero. The 
ecreases as the sine wave increases. It reaches zero 

at the point where the sine wave crests. The slope of the sine 
ve at this point is zero, causing the momentum to be zero. 

to the right, the slope of the sine wave increases in 
direction, causing the momentum to reach its neg- 

m just as the sine wave again crosses zero. The 
traced out by the dashed line in Figure 4.2. This 
s the characteristic that it reaches a crest 90 de- 

grees before the sine wave crests and reaches a valley 90 degrees 
before the sine wave does. 

If the price were a sine wave, it would be easy to conclude 
that moment~m is a leading indicator. But this is true only 
when the market is in a Cycle Mode. It is, therefore, imperative 
to first identify the mode of the market before assigning a lead- 
ing indicator capability to the momentum. In Chapter 1 1  , meth- 
ods to identify market modes are discussed. 

have already stated that momentum is analogous to a 
derivative in the calculus. ~e can use this fact to analyze the 

. ~ o ~ e n t u ~  leads a pure sine wave by 90 degrees. 



36 Rocket Science for Traders 

behavior of momentum in  the frequency domain. From any cal- 
culus text, the derivative of a sine wave  having the angular  fre- 
quency a is 

d(Sin(at))/dt = a*Cos(at) 

This equation shows that  the derivative of a sine wave  does 
lead the sine wave  by 90 degrees  because the result is exactly a 
cosine  wave, like  the dashed momentum shown in Figure  4.2. 
The equation also shows that amplitude is directly proportional 
to frequency. The amplitude is omega (a), which is 2*z*fre- 
quency. We expect the same phenomenon in trading. If we take 
the simple difference (momentum) of a 2-bar  cycle that varies 
between +l and -1, the difference will be the crest-to-valley 
value,  or  2.  Conversely, if we  have a 50-bar  cycle  swinging  be- 
tween +l and -1, then  the maximum momentum will be 
approximately %S = 0.08. There is no momentum for extremely 
long  cycles  because there is essentially no rate of change that  is 
useful for  trading. The frequency  response of a simple l-bar 
momentum is shown in Figure  4.3. 

Figure  4.3 shows that a zero  frequency  signal is almost com- 
pletely rejected by the filter. Shorter frequencies are rejected 
less. For example, a 10-bar  cycle  signal has a normalized fre- 
quency of 2/Period = %O = 0.2,  and is only attenuated by about 10 
dB. A 4-bar  cycle  signal (% = 0.5 normalized frequency) is only 

Figure 4.3. Frequency response of a simple momentum. 
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attenuated by about 3 dB. Since  very-low-frequency components 
are  rejected  and  higher-frequency components are passed,  Figure 
4.3 suggests that  momentum can  be  used  as a detrending filter. 
However, the passband is too narrow to be of practical benefit. 
As you recall from Chapter 3, the half-power point, or -3 dB 
point, is the accepted practical cutoff  frequency.  According to 
this definition, only  cycles with periods of 4 bars  or  less  would 
be pass. We can flatten  the frequency  response by malung the fil- 
ter wider.  However, in making the filter wider  we  also increase 
the lag. As with an SMA, the lag through an n-bar momentum  is 
Lag = (n - 1)/2. Therefore, there  is a l-bar lag  for a 3-bar momen- 
tum (Lag = (3 - 1)/2 = 212 = 1).  The 3-bar momentum is computed 
from the equation: 

MO = 0.5*Price - OS*Price[2]; 

The frequency  response of this filter is shown in Figure  4.4. 
There are two clear benefits from this filter, as  opposed to  the 
simple momentum filter of Figure  4.3.  First, the frequency  re- 
sponse of the filter is much flatter. For example, the attenuation 
at  the normalized frequency of 0.1 (a 20-bar cycle) is only -10 dB 
instead of the approximate -17 dB in Figure  4.3.  Second, the 2- 
bar  cycle (normalized frequency = 1) is nearly completely sup- 
pressed. The 2-bar  cycle is always  suppressed if the order of the 
symmetrical filter is odd. 

Normalized Frequency (Nyquist == 1) 

P 
! 
i 

! 
i 

l 

1 

! 
! I 

Figure 4.4. A 3-bar detrending filter has flatter frequency response and 
rejects the 2-bar cycle. 
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Figure 4.5. A 5-bar momentum  removes  both 2- and 4-bar cycle com- 
ponents. 

If a little  bit is good, a whole lot more is better-maybe. We 
can attempt to flatten the frequency  response  by using a 5-bar 
momentum.  The equation becomes 

MO = OS*Price - OS*Price[4]; 

The frequency  response  for this 5-bar momentum is shown 
in Figure  4.5. Unfortunately, we have introduced another fre- 
quency notch at a 4-bar  cycle. Once we stop and think about it, 
we see that  this makes sense because subtracting data from a 4- 
bar  cycle 4 bars ago will exactly cancel any output from the 
high-pass filter. 

The frequency notching exhibited in Figure  4.5  can  be elim- 
inated by making the filter have symmetrical coefficients. For 
example, if we write the equation as 

MO = 0.0909 *Price + 0.4545 *Price[ l] 
+ 0 - 0.4545*Price[3] - 0.0909*Price[4]; 

we then get the high-pass  frequency  response shown in Figure 
4.6. We have quickly reached the point of diminishing returns 
for this approach. For example, the  attenuation for the 20-bar 
cycle  slipped  from -5 dB in Figure  4.5 to about -8 dB in Figure 
4.6. In addition, the lag  from the high-pass filter is 3 bars. The 
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Figure  4.6. A 5-bar high-pass filter smoothes passband frequency re- 
sponse. 

advantage of the 90-degree  phase  lead  due to differencing is 
quickly lost due to  the lag. The  total phase  lag as a function of 
cycle  period due to the &bar  lag  can  be written as 

Phase  lag = 360*3/Period -90 degrees 

By setting the phase  lag to zero,  we  find that  the shortest cycle 
period  having no phase  lag i s  a 12-bar  period.  Longer  cycles will 
have a phase  lead.  Since we need to work with cycle  periods 
even shorter than 12  bars, there is no point in attempting to 
make the differencing  have a wider  passband  because additional 
lag will be induced. Thus, we  have  reached  our point of dimin- 
ishing returns. Further amplitude corrections must be  accom- 
plished by measuring the dominant cycle  and then applying a 
correction term for that cycle. 

It is interesting to take the momentum of an SMA. To clarify 
this point, we refer to prices  from the current time as A, B, C, D, 
and E. A 4-bar SMA of the prices is 

SMA=(A+B+C+D)/4  

and the 4-bar SMA of the prices 1 bar  ago is 

SMA[l] = (B + C + D + E)/4 
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When  we take the difference of the two moving  averages,  we  get 

SMA - SMA[ l] = (A - E)/4 

The  interesting conclusion here is that  the momentum of a 
4-bar SMA is exactly the same as a 4-bar momentum  within 
a constant factor of the averaging. This specific conclusion can 
be extended to any length SMA. 

By the same token, an SMA of four momentums arrives at 
the same conclusion. Consider this relationship: 

It all boils  down to  the same thing. An n-bar average of momen- 
tums is exactly the same as an n-bar momentum. 

Key Points to Remember 

Momentum can  never  lead the event. 
Momentum is always noisier than  the original function. 
Momentum can  produce a 90-degree  phase  lead in  the Cycle 
Mode. 
Improving momentum quickly reaches a point of diminish- 
ing returns. 
Amplitude  compensation of momentum can  be  accomplished 
by measuring the dominant cycle  and  applying a correction 
for that cycle  period. 
The  momentum of an n-bar SMA is  the same as an n-bar 
momentum. 



COMPLEX VARIABLES 
Numbers are like people; torture them enough 

and they  will tell you anything. 

-ANONYMOUS 

The mathematical concept of complex  variables is introduced in 
this chapter to lay the groundwork  for the derivation of indica- 
tors that are either impossible without complex  variables  or that 
would  require enormous computational overhead without them. 
Mastering  complex  variables will give  you  great insight into  the 
way market action can  be  described,  and can even  suggest  new 
indicators. 

Since  you are reading this book, you are undoubtedly com- 
fortable with our number system. However, there are some 
primitive societies that have  no  words  for numbers larger than 
10, other than an equivalent to “many,” because they run  out of 
fingers  on which to count. Even more surprising is  the fact that 
the concept of zero is a relatively modern invention. If you stop 
and think about it, “nothing” in  the physical  world is an 
abstract concept, so why  would one need a word to describe it? 
There was no zero in Roman numerals. In fact, the concept of 
zero  was not introduced to the Western  world until  the Renais- 
sance when Leonard0  de  Pisa (1 170-1240) (also called  Fibonacci) 
wrote Liber abaci. Somewhat later, the idea of negative numbers 
was introduced. If zero is an abstract concept,  how  could one 
possibly  have less than  nothing? Clearly, this objection to the 
number system existed  before the days of margin  calls. Today, it 
is accepted that  the numbering system can be  viewed  as a con- 

41 



42 Rocket Science for Traders 

tinuum of real numbers ranging  from minus infinity to plus in- 
finity along a straight line. 

There is no reason  why numbers must be  confined to a line. 
We can  conceive of numbers as existing in a plane.  Following 
this concept, any position on that plane can be  described by an 
ordered  pair of real numbers. The first number of the pair 
denotes the number of units along the horizontal dimension, 
and the second number of the pair denotes the number of units 
along the vertical dimension. But describing a position in a plane 
is rather clumsy. Also, a need  for  complex numbers arises in 
algebra  from the impossibility of finding the square roots of neg- 
ative quantities. The clumsy situation has to be  avoided,  and  we 
do this by the invention of the imaginary unit 

We can then define a complex  number as a combination of 
(a + i b )  formed  from the two real numbers a and b, and the imag- 
inary unit i. The imaginary unit i not only has the value of the 
square root of -1, but also  serves  as a rotation operator. Thus, 
the point on the plane  denoted by (a + i b )  is a units along the 
horizontal and b units along the vertical. In this  structure, the 
imaginary  operator reorients a real number from the horizontal 
axis to  the vertical, acting as the rotation operator. The two 
components a and i b  are  called the real  and the imaginary, 
respectively, of the complex number. Numbers along the verti- 
cal dimension are often called  imaginary numbers. This is  an 
unfortunate name choice,  for this number is no more  imaginary 
than other numbers. Imaginary numbers is just an assigned 
name, like rational numbers or prime numbers. What is impor- 
tant  is  that  the use of complex numbers ensures that a polyno- 
mial of any order with real coefficients  can  be  factored into 
complex roots. For example, the polynomial x' + bx + c cannot 
be  factored into real roots if c > b2. 

Electrical  engineering uses the symbol i to denote electrical 
current. Therefore, it is common practice to use the symbol j to 
denote the complex  operator to avoid confusion with electrical 
current. We follow that practice in  this book. It is also common 
to refer to the horizontal dimension as x and the vertical dimen- 
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-jl 

-j2 

Figure 5.1. Real and imaginary  numbers in the 
complex plane. 

sion as y, so the complex number z is understood to be z = x + jy. 
The real and complex numbers forming the complex plane are 
depicted in Figure 5.1. 

Arithmetic can be easily  performed in  the complex  plane. If 
you  add a real number to another real number, the result is a real 
number that is the  sum of the two real numbers. If you  add 
an imaginary number to another imaginary number, the result 
is an imaginary number that is  the  sum of the two imaginary 
numbers. However, if you  add an imaginary number to a real 
number, the result is a complex number. The real numbers and 
imaginary numbers are said to be orthogonal. In this case, ortho- 
gonal not only means that  the numbers exist at right angles, but 
it also means that they are independent of each other. The most 
complicated mathematical operation occurs when a complex 
number is added to  another complex number. In doing this, 
the real components are  added together and,  independently, the 
imaginary components are  added  together. An example of com- 
plex  addition is shown in Figure 5.2, which  shows that  the addi- 
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0 1 2 3 4 5 6 7  

Real 

Figure 5.2. Addition of two complex  numbers. 

tion of complex numbers is exactly the same operation as  vector 
addition in two dimensions. 

The product of a real  and an imaginary number is imaginary. 
Thus  2*j3 = j6. The product of two real numbers i s  real, as is the 
product of two imaginary numbers: j2*j3 = -6, and j3 *(-j4) = 
+12. The reason the product of two imaginary numbers is real is 
that  the imaginary unit is also multiplied, and j 2  = -1. The  mul- 
tiplication of two generalized  complex numbers is 

(a  + jb)*(c + j d )  = QC - bd + jad + jbc = (ac - bd) + j(ad + bc) 

A complex number can also be expressed in polar  coordi- 
nates. With  reference to Figure  5.3, the polar coordinate dimen- 
sions are r at an angle of 8. The relationships between the real 
and  imaginary  coordinates  and the polar  coordinates  are 

a = r*Cos (e) 
b = r* Sin (e) 
r = G T P  
8 = ArcTan( b/a) 

It is also  useful to express  complex numbers in exponential 
form. The exponential function is,  by definition, equal to the 
limit approached  by  an infinite series: 
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Real 

z = (a+jb) 

Figure 5.3. Components of 2. 

9x3 x" & = l + x + - + - +  . . . -  2! 3! n! 

This series reminds us of the series that defines 
metric functions: 
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the trigono- 

e2 e4 82" 
COS (e) = 1 - - + - - . . . + (-lp - 

2! 4! (2n) ! 
e3 e5 
3! 5! (2n - l)! 

- 11 
sin (e) =e - - + - - . . . - 

The sine and  cosine  series, although rather like  the exponen- 
tial series in most other ways,  have a reversal of sign of alternate 
terms. A similar reversal of sign takes place in the exponential 
series, but only if the exponent is imaginary.  Consider eie, which 
can be  found by letting x = je in  the exponential series. In this 
case we obtain 

eje= 1 --+--. e2 e4 . .)+(e--+--. e3 e5 . . )  ( 2! 4! 3! 5! 

By comparison to  the series expansions  for the sine and 
cosine functions, we can express the exponential form as 
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eje = Cos (e)  + j Sin (e) 

Alternately, we can  express the Cosine and  Sine functions as 

eie + e+ = 2 Cos (e) 
and eie - e-ie = j2 Sin (e) 

This is an important theorem of complex  variable theory 
known as Euler’s Theorem. Euler’s Theorem says that sines and 
cosines can be expressed in terms of an exponential function 
having  an imaginary operator. 

We are all familiar with the frequency of a cycle. For exam- 
ple, the power  coming  from our wall  plugs is an alternating cur- 
rent. The frequency of this alternating current is 60 cycles  per 
second.  Cycles are repetitive. Each time a cycle is completed, it 
sweeps through 360 degrees, or 2n radians, of a sine wave. It is 
convenient to define the angular  frequency as 2n times the reg- 
ular frequency by the equation w = 27$ where o is the Greek let- 
ter omega.  Using these definitions, ~t is  the number of radians a 
cycle  covers in a given amount of time. Since wt is an angle,  we 
can represent the cycle in exponential form  as ejwt, using com- 
plex notation. We thus see in Figure 5.4 that a pure cycle of an 
analytic waveform in the  time domain  can be represented as a 
projection onto either the real or imaginary axis. 

Real 

Figure 5.4. Exponential  complex frequency and 
its components. 
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The concept of the exponential  form is an extremely  impor- 
tant one for the digital  signal  processing of trading  waveforms. 
The waveform  we  observe  on the charts is called an analytic 
waveform. If we  can  break the analytic waveform into  its two 
orthogonal  components, we can  immediately  find the amplitude 
of the cycle. By examination of Figure 5.4 and  using the F'ythago- 
rean  Theorem,  we  can  see that  the square of the real  component 
plus the square of the imaginary  component is equal to r2, the 
square of the cycle amplitude. Thus, we  have a bar-by-bar  meas- 
urement of the amplitude of the cycle in  the time domain.  Such 
a highly  responsive  measurement of signal amplitude is an  impor- 
tant component of all effective  trading  indicators and systems. 

The exponential  form  also gives us a particularly simple way 
to measure the period of the market cycle. The cycle  period  meas- 
urement approach  can  be  understood with reference to Figure 
5.5. The  initial measurement is made at time tl so that  the phase 
angle is atl. The second measurement is  made at time t2, result- 
ing in the measured  angle at2. The hfference between the two 
phase  angles  is Ae. To measure the cycle  period,  we  simply  keep 
addmg all the A& until  the sum equals 360 degrees. The number 
of times we  have to add the Aes is, by definition, the period of the 
cycle. We discuss  exactly  how to do this in Chapter 7. 

Figure 5.5. ' h o  successive phasor measurements. 



48 Rocket Science for Traders 

Figures 5.4 and 5.5 are  phasor  diagrams.  Phasor  diagrams  rep- 
resent the cycle  as a rotating vector (or, the phasor) in complex 
coordinates, where the  tail of the phasor is pinned to  the origin. 
The length of the phasor represents the wave amplitude of the 
cycle. The phase  angle represents a particular location within 
the cycle. 

The phasor  diagrams we have  been  discussing only consider 
the presence of one significant dominant cycle in  the data.  Hap- 
pily, that is usually the case. The phasor diagram is therefore 
useful  for  comparing the lead  and amplitude of momentum 
functions to the original  data,  and also for  comparing the lag  and 
amplitude of smoothing functions to  the original  data. 

But what if there is  a secondary  cycle present in the data? 
Such a cycle is very  difficult to identdy because it lasts for only a 
brief amount of time and the short amount of data  we  are  forced 
to use cannot provide  enough resolution for filters. Since the 
complex  variables  can  be  added, the phasor picture might look 
something like the depiction in Figure 5.6. The dominant cycle, 
having a frequency of ol, is rotating as  previously  described. The 
secondary  cycle is assumed to have a smaller amplitude and a 
higher  frequency 0 2 .  When these two complex  variables  are 
added, the secondary  cycle spins like a bicycle  pedal at the end of 
the crank, which is analogous to the  tip of the phasor of the first 

Real 

Figure 5.6 The addition of two phasors having 
different frequencies. 
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cycle.  Assuming the secondary  cycle is present  only for a short 
while, the resultant phasor will look like the dominant cycle 
with a little whiffle  superimposed on it. These whiffles  are 
immediately identifiable when the phasor is plotted. In later 
chapters, we identify these whiffles in  the real  data. 

Key Points to Remember 

e 

e 

e 

Complex  variables are a two-dimensional number set. 
The horizontal dimensions are  called  real numbers. 
The vertical dimensions are called  imaginary numbers. 
j = fi and is the 90-degree rotation operator. 
A rotating phasor  describes a pure cycle  from the exponen- 
tial complex  frequency. 
Relative  phases  can be  described using phasor  diagrams. 
Euler’s equations describe Cosines and  Sines of real frequen- 
cies  as  being  comprised of complex  frequencies. 
Two simultaneous cycles  can  be  depicted  as a bicycle  diagram. 



This Page Intentionally Left Blank



Chapter 6 

HILBERT TRANSFORMS 
Ideas  are like  rabbits. You  get  a  couple 

and  learn how  to handle them, 
and pretty soon you have a dozen. 

"JOHN STEINBECK 

This chapter contains some of the most important concepts 
upon which all the following practical applications are based. 
First,  we  derive the Hilbert Transform. The Hilbert Transform is 
a procedure to create complex  signals  from the simple chart data 
familiar to  all traders.  Once  we  have the complex  signals,  we  can 
compute indicators and  signals that are more accurate and 
responsive than those computed using conventional techniques. 
In fact, some of the indicators we will discuss cannot be  calcu- 
lated at all without the Hilbert Transform. 

If we  accept that there can  be  imaginary  numbers, then the 
concept of negative  frequencies should pose  no  problem. If we 
review trigonometric identities, we  recall that Cos(-at) = Cos(ot) 
and that Sin(-ot) = -Sin(ot). These identities show that we  can 
easily  accommodate  negative  frequencies.  Further, the power 
contained in waveforms is proportional to the average  square of 
the waveform. The squaring of the sign  always  produces a posi- 
tive power, so there can  be  no  exception to the concept of con- 
servation of power if we use negative  frequencies. 

When data are sampled at a sampling frequency fs,  that sam- 
pling  frequency acts like a radio  carrier  signal. That is, the real 
data being  sampled  are  heterodyned into upper  and  lower  side- 
bands of the sampling frequency. Mathematically, heterodyning 

5 1  
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is multiplying two frequencies (and then filtering to select the 
desired output). So, if we  have a baseband data frequency of  fb, 
the heterodyning can be  described  as the product of two signals. 
By a trigonometric identity, this product results in  the  sum and 
difference  frequencies  as 

The lower  sideband  can  be  considered as a negative  fre- 
quency relative to the sampling frequency,  and the upper  side- 
band  can  be  considered  as a positive frequency relative to the 
sampling frequency. Furthermore, every harmonic of the sam- 
pling  frequency exists. Each harmonic also has an  upper  and 
lower  sideband containing the baseband  signals. 

Since the lower  sideband of the sampling frequency exists, it 
could extend down into  the baseband  range of frequencies. For 
this reason, the baseband  range of frequencies is limited to fJ2. 
This  is called the Nyquist sampling criteria. In trading, this 
means the absolute shortest period we can use is a 2-bar  cycle,  or 
a frequency of 0.5 cycles  per  bar. The sampling frequency can  be 
weekly,  daily,  hourly,  and so on, but the shortest period  we  can 
consider in any time frame is  a 2-bar  cycle. 

The sampled data spectrum can  be pictured as shown in Fig- 
ure 6.1. The baseband signal is depicted  as a  continuum of fre- 
quencies that is bandlimited, either naturally or  by a filter, to be 
less than half the sampling frequency fs. Several of the harmon- 
ics of the sampling frequency are also shown, along with their 
respective  sidebands.  Since  we are talking about complex func- 
tions, the sampled spectrum can extend below  zero  frequency  as 
well. As a result, the complete sampled  frequency spectrum 
extends from minus infinity to plus infinity, as shown in Figure 
6.2. An interesting observation is  that either the upper  or  lower 
sideband of any harmonic of the sampling frequency  can be 
processed with exactly the same result because the same infor- 
mation resides in all sidebands. The frequency selection for  pro- 
cessing is  a  matter of convenience and  is,  therefore, usually the 
baseband  because demodulation of the zero  frequency harmonic 
is  not required. 
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Figure 6.1. The baseband frequency below  half the sampling frequency 
appears  as sidebands on harmonics of the sampling frequency. 

The waveforms with which all traders are familiar are  called 
analytic signals. Analytic signals are defined  as a special  case of 
a complex function without imaginary  values, that have  only 
positive or  only  negative  frequencies, but  not both. We need to 
construct more general  complex functions to enable more effi- 
cient signal processing. This can be  done by synthesizing the 
analytic signal from a combination of two complex  signals that 
are odd and  even functions around zero. 

First, we must recall the trigonometric identities Cos(cot) = 
Cos(-cot) and  Sin(cot) = -Sin(-cot) and Euler’s equations: 

and 

We can synthesize the analytic signal by summing the two com- 
plex  signals  as shown in Figure 6.3. The real  component of Figure 
6.3(a) is summed with the imaginary  component in Figure 6.3(b) 
to form the complex  signal  shown in Figure 6.3(c). From  Euler’s 

4 4 4 4 
-2fs -6 0 fs 2 fs 

Figure 6.2. Sampled data spectrum extends to  negative frequencies. 
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Figure 6.3. An analytic signal is comprised of Inphase and  Quadra- 
ture components. 

equations, the two complex  signals  can  be  called the Inphase 
(i.e., the Cosine) component  and the Quadrature (i.e., the Sine) 
component. Quadrature means being rotated by 90 degrees. 

The Hilbert Transformer has been  derived in a number of 
texts, to which you  may want to refer  for more information.' 
One purpose of a Hilbert Transform is  to create a complex  signal 
from an analytic signal. A Hilbert Transformer shifts all positive 
frequencies by -90 degrees  and all negative  frequencies by 90 
degrees.  Since the frequency  response of sampled systems is 
periodic,  we can describe the Hilbert Transformer in terms of 
angular  frequency  as shown in Figure 6.4 for unity amplitude 
components. Since this graph is periodic,  we can use the Fourier 
series to determine the coefficients of the exponential series 
that represents the plot. The Fourier series can be written as 

'Rabiner,  Lawrence R., and Bernard  Gold. Theory and  Application of 
Digital Signal Processing. Englewood  Cliffs: Prentice Hall, 1975. 
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i 
-2 x x x - 0  R 

-1 . 

Figure  6.4. Periodic frequency response of a Digital Hilbert Trans- 
former. 

H ( z )  = 1 C,P 
n=-- 

If we let z = ejoT with T = 1, the Fourier Transform becomes 

and 

This equation describes the coefficients of the digital filter. Solv- 
ing the integral equation for the filter coefficients (because the 
square wave has the same Sin(x)/x form as the pulse described in 
Chapter 3), we obtain 

forn#OandC,=Oforn=O. 
The value of n is relative to  the center of the filter, so the 

center coefficient is always  zero. The value of the sine squared 
term is always positive and has a unity value for  odd values of n. 
The coefficients  are,  therefore, simply l/n for  odd  values of n; 
they are positive for the most recent data half  of the filter; and 
they are  negative in the older data half of the filter. The ideal 
Hilbert Transformer extends coefficients from minus infinity to 
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plus infinity. The 2/7r factor can  be  ignored here because each 
coefficient is divided  by the  sum of the coefficients to produce a 
normalized amplitude response. That is, the desired  frequency 
components at  the output of the filter should have the sample 
amplitude they had at  the filter input. We can approximate the 
Hilbert Transformer by truncating the extent. For example, we 
could truncate the filter at n = 7. In this case, where the 
detrended  Price is represented by l? the Quadrature component 
(Q) of the Hilbert Transform can be written as 

Q = (P/7 + P[2]/5 + P[4]/3 + P[G] - P[8] - P[10]/3 - P  [l2115 
- P[14]/7)/( 1 + 1/3 + 1/5 + 1/7); 

The Inphase component ( I )  of the filter is referenced to  the ten- 
ter of the filter, and can be written simply as 

Note that  the lag of this Hilbert Transform is 9 bars. 
Since the Hilbert Transformer must be truncated, ideally it 

should be sufficiently long to capture a full cycle of the longest 
period  under consideration. It is  not unreasonable to want to 
process a cycle that  is 40-bars  long. This  is about two months of 
daily data. In this case,  we  would like  to  truncate at n = 19.  How- 
ever, such a Hilbert Transformer  would  have a lag of 21  bars. 
This lag is unacceptable because we would also want to process 
cycles with a period of 10  bars  or less. The 21-bar  lag  would  be 
more than two cycles of the data that have shorter periods. 

An alternative way to  truncate the Hilbert Transformer is  to 
use as short a filter as  possible. If we truncate the Hilbert Trans- 
former at n = 3, the Quadrature component can be written as 

Q = P/3 + P[2] - P141 - P[61)/(4/3) 
= 0.25*P + 0.75’P[2] - 0.75*P[4] - 0.25*P[6]; 

This short Hilbert Transformer has a lag of only 3 bars.  How- 
ever, the severe truncation produces the amplitude transfer 
response shown in Figure 6.5. A truncated Hilbert Transformer 
has a frequency  response similar to that of a momentum function. 
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I I I  

NonnalizedRequency  (Nyquist = 1) 

Figure 6.5. Amplitude response of a Hilbert Transformer truncated at 
n = 3 .  

The amplitude response of a minimum-length Hilbert Trans- 
former can be  improved  by adjusting the filter coefficients by 
trial and  error. The resulting Hilbert Transformer filter equation 
is 

Q = O.O962*P + 0.5769*P[2] - 0.5769*2‘[4] - O.O962*P[6) 

The amplitude response of the Improved Hilbert Transformer i s  
shown in Figure 6.6. 

Normalizedhequency (Nyquist = 1) 

Figure 6.6. Amplitude response of the Improved Hilbert Transformer. 
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The response of the Improved Hilbert Transformer is  not dis- 
similar from the 5-bar  high-pass filter described in Chapter 4 
(Figure 4.6). The Improved Hilbert Transformer has a more sym- 
metrical response, but has a 3-bar  lag  versus the 2-bar  lag of the 
high-pass filter. Also, there is less rejection of the intermediate- 
length cycles in  the Improved Hilbert Transformer. For example, 
the attenuation for a normalized frequency of 0.1 (a 20-bar cycle) 
is about -6  dB, whereas the rejection of the 5-bar  high-pass filter 
was about -8 dB at this frequency. The Improved Hilbert Trans- 
former also makes a pretty good high-pass filter. 

We formed the Improved Hilbert Transformer to satisfy the 
criterion of minimizing lag. The penalty we paid  for minimizing 
lag  was the resulting amplitude taper  across the frequency  band 
at which we  desire to operate.  Since the Improved Hilbert Trans- 
former is so similar to a high-pass filter, and the high-pass filter 
has an amplitude rolloff directly proportional to frequency,  we 
can compensate for the amplitude rolloff if we know the fre- 
quency. We  do not have the frequency directly because  we  need 
the Inphase and Quadrature components to compute it. How- 
ever, we do know what the measured  cycle  period  was l bar  ago. 
Since  frequency is a slowly  varying function from  bar to bar, the 
cycle  period 1 bar ago can easily be used for amplitude compen- 
sation. 

If the Hilbert Transformer  were a pure differentiator, we 
know the amplitude correction term would  be inversely propor- 
tional to o (see Chapter 4). Since the cycle  period is the recipro- 
cal of the frequency, the correction term would  be  (Periodlan;). 
When  we examine Figure  6.6,  we see that we  need an l1 dB cor- 
rection for a cycle  period of 40 bars (normalized frequency of 
0.05) and a 6.2 dB correction for a cycle  period of 20  bars (nor- 
malized  frequency of 0.1). Converting these decibel  values to 
amplitude and writing a straight line correction equation, we. 
have the result 

Amplitude correction = (0.075*Period[l] + 0.54) 

This amplitude correction enables us to effectively use a mini- 
mum-length Hilbert Transformer to keep the lag to as small a 
value as possible. 



ilbert Transform, as explained earlier, is 
adrature components from the an~lytic 
nd ~uadrature components enable effi- 

cient computation to find the dominant cycle period, the domi- 
nant cycle amplitude, and the phase of the dominant cycle. 
From these parameters we can calculate unique and precise indi- 
cators, such as the S i ~ ~ f f ~ - t o - ~ o i s e  Ratio, the Sinewave Indica- 

ode predictive indicator], and an Instantaneous 
(nearly) complete code to calculate the InPhase 
components is given in Figure 6.7. (The com- 

plete code requires the computation of the dominant cycle 
period, which is covered in the next chapter.) 

In ~asy~anguage code, all input values must be defined. In 
the case of Figure 6.7, the only input value is Price, and is com- 
puted as the average of the High and Low for each bar in the data 

Inputs : Price ( (w+L) /2) i 

Vars: Smooth(0) , Detrender(O), Il(0) , Ql(0) , Period(0); 

If CurrentBar > 5 then begin 
Smooth = (4*Price + 3*Price[l] + 2*Price[2] + 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
PriceC3I) / 10; 

.5769*Smooth [4] - .0962*Smooth [6] ) * 
( .075*Period [ll + .54) ; 

{Compute InPhase and Quadrature components} 
Ql = ( .0962*Detrender + .5769*Detrender [2] - 

.5769*Detrender 141 - .0962*Detrender [6] ) * 
( .075*Period [ll i- .54) i 

I1 = Detrenderl31 ; 

Plot1 (11, "InPhase" ) ; 
Plot2 (-Ql, "Quadrature) ; 

End; 

.7. Hilbert ~ r a ~ s f o r m  ~asyLa~guage code. 
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series. Next, all the other variables must be  defined,  and their 
initial values must be set  to zero. The first line of computational 
code computes the variable Smoother as a 4-bar  Weighted  Mov- 
ing Average (WMA) of Price. A 4-bar WMA is used to remove 
some of the higher-frequency components prior to detrending 
the Price. The lag penalty for this smoothing is only 1 bar. The 
Price is detrended in the next line of code.  Since we have an 
amplitude-corrected Hilbert Transformer,  and since we want to 
detrend over its length, we simply use the Hilbert Transformer 
itself as the detrender. We  do not particularly care about the 
phase of the detrended analytic signal at this point. However, we 
do note that detrending has introduced another 3 bars of lag into 
the computation. The amplitude correction can be  applied  after 
we compute the period of the dominant cycle. The Inphase and 
Quadrature components are contained in  the next two lines of 
code. The Quadrature component is computed by applying the 
Hilbert Transformer a second time.  The Inphase component is 
computed simply by using the Detrender value referenced to 3 
bars  ago, the center of the Hilbert Transformer.  Therefore, the 
calculation of the Inphase and Quadrature components intro- 
duces still another 3 bars of delay in  the calculation. We now 
have a total of 7 bars of delay after computing the Inphase and 
Quadrature components. 

The Inphase and Quadrature components are only concerned 
with Cycle  Mode  signals  because the Detrender removed the 
trending components. The 7-bar  lag can be  converted to a phase 
lag  by the following  process: We divide the 7-bar  lag  by the dom- 
inant cycle  period to get a percentage of a cycle  and then  multi- 
ply by 360 degrees. Furthermore, the Hilbert Transformer  offers 
the advantage of providing 90 degrees of phase  lead. The equa- 
tion for phase lag is  then 

Phase  lag = 360* 7/Period - 90 

Therefore, a 28-bar dominant cycle will have zero  lag. A 14-bar 
dominant cycle will have 90 degrees  lag,  or a quarter cycle. The 
phase  lag  grows  rapidly  for still shorter cycle  periods. For exam- 
ple, a 7-bar  cycle will have  180-degrees  lag,  corresponding to a 
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half cycle. The phase  lag of the Inphase and Quadrature compo- 
nents can be a serious consideration when interpreting the 
results of some indicators. For example, knowing the Inphase 
component is delayed  by 7 bars  from the time-domain wave- 
form,  we can anticipate the crest of the time-domain waveform 
by projecting when the Inphase component will reach its maxi- 
mum 7 bars into  the future. 

Key Points to Remember 
e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

e 

Both positive and negative frequencies are possible in signal 
processing. 
only positive frequencies  or  only  negative  frequencies, but 
not both, comprise the analytic signal. 
Complex  signals contain Inphase and Quadrature compo- 
nents. 
An analytic signal can be synthesized by complex  signals. 
Following the preceding two points, an analytic signal can be 
decomposed into Inphase and Quadrature components. 
A Hilbert Transformer is the technique used to decompose 
analytic signals. 
Hilbert Transformers must be  severely truncated to produce 
acceptable lag  for use in trading. 
Amplitude compensation of the Inphase and Quadrature 
components can be accomplished by knowing the period of 
the dominant cycle. 
The analytic signal must be smoothed and detrended prior to 
computing the Inphase and Quadrature components. 
The amplitude-compensated Hilbert Transformer  can  be 
used to detrend the analytic waveform. 
The phase lag of the Inphase and Quadrature components is 
(360 * 7/Period - 90) degrees. 
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MEASURING CYCLE PEEUODS 
. . . but what are we going to do  with 

all those skinned cats! 

"ANONYMOUS 

One fundamental definition of a cycle is  that  the process  under 
consideration has a constant rate of phase  change. We can meas- 
ure the phase of a complex signal directly.  Knowing the phase at 
each  sample, we need  only take the bar-to-bar  difference to 
obtain the rate of phase  change. In this chapter,  you are pre- 
sented with several mathematical techniques for measuring the 
period of the dominant cycle.  While mathematically dissimilar, 
all these techniques share the common feature of using differen- 
tial phase between samples. 

Phase Accumulation 

The Phase Accumulation technique of cycle  period measure- 
ment  is perhaps the easiest to comprehend. In this technique, 
we measure the phase at each sample by taking the arctangent of 
the ratio of the Quadrature component to  the Inphase compo- 
nent. A delta phase is generated by taking the difference of the 
phase between successive samples. At  each sample we can then 
look  backward,  adding up the delta phases.  When the  sum of the 
delta phases  reaches 360 degrees,  we must have  passed through 
one full cycle, on average. The process is repeated  for  each  new 
sample. 
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The Phase Accumulation method of cycle measurement 
always  uses one full cycle’s worth of historical data. This  is  both 
an advantage  and  disadvantage. The advantage is the lag in 
obtaining the answer  scales directly with the cycle  period. That 
is, the measurement of a short cycle  period has less  lag than  the 
measurement of a longer  cycle  period.  However, the number of 
samples used in making the measurement means the averaging 
period is variable with cycle  period.  Longer  averaging  reduces 
the noise level  compared to  the signal.  Therefore, shorter cycle 
periods  necessarily  have a higher output Signal-to-Noise Ratio. 

Implementing the Phase Accumulation method of cycle 
measurement with  the EasyLanguage  code is described with ref- 
erence to Figure  7.1. The  initial part of the code creates the 
Inphase and Quadrature components, I1  and  Q1, as discussed in 
the last chapter. It is crucial that I1 and  Q1  be smoothed before 
the arctangent of their ratio is taken. We  do the smoothing in an 
EMA whose  alpha  equals  0.15. The instantaneous  phase (the 
phase at any bar)  is computed as the arctangent of the ratio of Q1 
to 11. This gives the instantaneous phase within a quadrant. The 
quadrant ambiguity is removed in  the subsequent three lines of 
code. We then compute the differential  phase (Deltaphase) 
between successive  samples. There can be  considerable  error in 
the raw differential phase computation. To keep these large 
errors  from unduly influencing the outcome, we limit  the values 
of the differential  phase to be between cycle  periods of 6 bars 
(Deltaphase = = 60) and 50 bars (Delta Phase = 360/5~ = 7). The 
Deltaphases are then accumulated until  the PhaseSum  exceeds 
360 degrees.  At that point, the cycle  period is assigned as the 
number of samples required  for the PhaseSum to reach the 360- 
degree  value. The accumulation is done  for  each  bar in  the data 
set  but is limited to a value of 40 bars. The  limitation is based on 
our assumption that cycle  periods of 40 bars  and  longer result in 
a Trend  Mode,  and detailed knowledge of their periods is not 
necessary. If the cycle  period has not been identified within  the 
maximum 40-bar accumulation period, then it is assigned the 
value of the cycle  period measurement for the previous  sample. 
It  is  then smoothed by an EMA whose alpha equals 0.25 to cre- 
ate a pleasing presentation. The lag due to  this EMA is 3 bars. 



Measuring  Cycle Periods 

Inputs:  Price ( (H+L) /2) ; 

Vars : Smooth ( 0 )  I 
Detrender ( 0 )  l 
I1 ( 0 )  I 
Q1 ( 0 )  , 
Phase ( 0 )  I 
Deltaphase ( 0 )  , 
InstPeriod(0) , 
count ( 0 )  l 
PhaseSum ( 0 )  , 
Period ( 0 )  ; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price[l] + 2*Price[2] 
Price[3] ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[21 
.5769*Smooth  [4] - .0962*Smooth L61 ) * ( .075* 
Period  [l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender [21 - 
.5769*Detrender  [4] - .0962*Detrender L61 * 
( .075*Period 111 + .S41 ; 

I1 = DetrenderL31 ; 

{Smooth  the  I  and  Q  components  before  applying 

I1 = .15*11 + .85*11  [l] ; 
Q1 = .15*Q1 + .85*Q1  [l] ; 

the  discriminator} 

{Use  ArcTangent  to  compute  the  current  phase) 
If  AbsValue(I1) z 0 then  Phase = 
ArcTangent  (AbsValue  (Ql/Il) ; 

{Resolve  the  ArcTangent  ambiguity  for  quadrants 

If  I1 c 0 and  Q1 > 0 then  Phase = 180 - Phase; 
If  I1 0 and  Q1 < 0 then  Phase = 180 + Phase; 
If  I1 0 and  Q1 0 then  Phase = 360 - Phase; 

2, 3, and  4} 

(continued) 

Figure 7.1. Phase  Accumulator  cycle period measurement. 
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{Compute  a  differential  phase,  resolve  phase 
wraparound  from  quadrant 1 to  quadrant 4 ,  and 
limit  delta  phase  errors} 

DeltaPhase = Phase[ll - Phase; 
If  PhaseLl] c 90 and  Phase > 270 then  Deltaphase 

{Limit  DeltaPhase  to  be  within  the  bounds  of 6 

If  Deltaphase c 7 then  Deltaphase = 7; 
If  Deltaphase > 60 then  Deltaphase = 60; 

{Sum  Deltaphases  to  reach 360 degrees.  The  sum  is 

Instperiod = 0; 
Phasesum = 0; 
For  count = 0 to 4 0  begin 

= 360 + Phase111 - Phase; 

bar  and 50 bar  cycles} 

the  instantaneous  period.} 

PhaseSum = PhaseSum + DeltaPhase[countl; 
If  PhaseSum > 360 and  InstPeriod = 0 then 
begin 

InstPeriod = count; 
End ; 

End ; 

{Resolve  Instantaneous  Period  errors  and  smooth} 
If  Instperiod = 0 then  InstPeriod = 

Period = .25*InstPeriod + .75*Period[ll; 

Plot1  (Period,  "DC") ; 

Instperiod [l] ; 

End ; 

Figure 7.1. (Continued). 

Total lag through the Phase Accumulation cycle  period 
measurement consists of 6 bars  for the first EMA, 3 bars  for the 
display smoothing EMA, 7-bars  lag to compute the original 
Inphase and Quadrature components, and one full cycle of this 
accumulation process.  Therefore, the total lag is 16 bars plus one 
full-cycle period.  Since the dominant cycle  period is a relatively 
slow varying function of time, this lag  may  be  acceptable in 
many applications. 
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Homodyne Discriminator 

Homodyne means we are multiplying the signal by itself. More 
precise, we want to multiply the signal of the current bar with 
the complex  conjugate of the signal 1 bar  ago. The complex  con- 
jugate is,  by definition, a complex number whose sign of the 
imaginary component has been  reversed.  Expressing the signal 
in polar  coordinates, the arithmetic is 

The interesting result is  that we  get both the square of the sig- 
nal amplitude and the angular  frequency (27c / Period)  from the 
product  because the difference in time between  samples ( t n  - t n  - 1) 

is just 1 bar. In principle, this means that we  can  get the instanta- 
neous  cycle  period in just two successive  samples. The added 
benefit is  that we also get the square of the signal  amplitude. The 
calculations  are  carried out using the real  and  imaginary  compo- 
nents rather than converting them  to polar  coordinates.  Either 
way, the results are the same. 

The EasyLanguage  code  for the Homodyne Discriminator is 
described with reference to Figure 7.2. The Inphase and  Quadra- 
ture components are computed using the Hilbert Transformer as 
explained in Chapter 6.  These components are smoothed in a 
unique complex  averager and then smoothed by an EMA to 
avoid any undesired  cross products in  the multiplication step 
that follows. Consider the result as a composite of signal and 
noise represented by (S + N). If we  were to multiply this by itself, 
we would get S2 + N 2  + SN + NS. Of the four  products, three are 
undesired due to noise. Therefore, we must  take every measure 
to remove  undesired components prior to any multiplication. 
The complex  averaging consists of applying the Hilbert Trans- 
former to both the Inphase and Quadrature components. This 
advances the phase of each component by 90 degrees.  When the 
Inphase component is advanced  by 90 degrees, it becomes equal 
to  the Quadrature component. Similarly, when the Quadrature 
component is advanced in phase by 90 degrees, it becomes the 
same as the negative Inphase component. So, if we perform a 
Hilbert Transform on an Inphase component, it will be  aligned 
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Inputs:  Price ( (H+L) /2) ; 

Vars : Smooth (0) , 
Detrender (0) , 
I1 (01 ,  
Q1 (01 ,  
jI (01, 
jQ(0) I 
I2 (0) , 
Q2 (0) l 
Re (0) , 
Im(O), 
Period ( 0 )  , 
SmoothPeriod (0) ; a 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price[l] + 2*Price[2] + 
Price[3] ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
.5769*Smooth [4] - .0962*Smooth  [6] ) * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender[2] - 
.5769*Detrender  [4] - .0962*Detrender  [6] ) * ( .075* 
Periodill + .54) ; 

11 = Detrender  [3] ; 

{Advance  the  phase  of  I1  and  Q1  by 90 degrees} 
jI = (.  0962*11 + .5769*11[2] - .5769*11[41 - 

jQ = ( ,  0962*Q1 + .5769*41 L21 - .5769*Q1[41 - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 

{Phasor  addition for  3  bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

(continued) 

Figure 7.2. Homodyne Discriminator cycle period measurement. 
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l I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2 111 ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l1 ; 
Im = .2*Im + .8*Im[ll; 
If  Im C >  0 and  Re c >  0 then  Period = 360/ 
ArcTangent  (Im/Re) ; 

If  Period > 1.5*Period[ll  then  Period = 
1.5*Period  [l] ; 

If  Period c .67*Period[l]  then  Period = 

.67*Period [l] ; 
If  Period c 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

Plot1  (SmoothPeriod, 'DC" 1 ; 

I End; 
I 

Figure 7.2. (Continued). 

in phase with the Quadrature component. However, the Hilbert 
Transform has a 3-bar lag. The transformed Inphase component 
summed with  the Quadrature component is therefore the  math- 
ematical equivalent of the simple average of a signal with the 
signal 3 bars  ago. The same process  applies to performing a 
Hilbert Transform  on the imaginary component and  adding it to 
the Inphase component. The  net  result is that  the net complex 
averaging  lag is 1.5 bars.  After smoothing, the signal is  multi- 
plied  by the complex  conjugate of the signal 1 bar  ago. The 
resulting output real component is the product of the two real 
components added to  the product of the two imaginary compo- 
nents. Similarly, the resulting output imaginary component is 
the difference of the two input cross  products.  Both the real  and 
imaginary output products are smoothed again  before the cycle 
period is computed. This  is done  by taking the arctangent of the 
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ratio of the  output imaginary component to  the real component. 
The rate change of the cycle  period is limited to be +-50 percent 
of the previous  cycle  period,  and the resultant period is  further 
limited  to be greater than 6 bars  and less than 50 bars.  Finally, 
the period is smoothed for a pleasing  display. 

Total lag through the Homodyne Discriminator cycle  period 
measurement consists of the following:  seven-bars  lag to com- 
pute the original Inphase and Quadrature components and 
4-bars  lag in each of the three EMAs, and 1.5 bars  for the com- 
plex  averaging.  Therefore, the total lag is a constant 20.5 bars. 
The  net smoothing is the same regardless of the measured 
period.  Therefore, the Signal-to-Noise  Ratio as well  as the lag is 
constant for all cycle  periods. 

Dual  Differentiator 

We have seen how the phase  angle is computed from a complex 
signal as the arctangent of the ratio of the imaginary component 
to  the real component. Furthermore, we  have seen that angular 
frequency is defined as the rate change of phase. We can use 
these facts to derive still a third way of using complex  signals to 
measure the cycle  period.  From the definition of the derivative 
of an arctangent, the mathematics of this process  are 

0 = arctan( 9) 

Simpldying,  and  solving  for the cycle  period instead of fre- 
quency,  we obtain 

2n;(12 + Q2) 
(IAQ - QM) 

Period = 

The EasyLanguage  code  for the Dual Differentiator Discrim- 
inator is described with reference to Figure 7.3. The Inphase 
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Inputs : Price ( (H+L) /2) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 )  , 
11 (01,  
Q1 (01,  
jI (01,  
jQ(O), 
I2 (01 ,  
Q2 ( 0 )  , 
Period ( 0 )  , 
SmoothPeriod ( 0 )  ; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price  [l] + 2*Price[2] 
Price131 ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[21 
.5769*Smooth[41 - .0962*Smooth[61) * ( .075* 
Period[ll + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender L21 - 
.5769*Detrender 141 - .0962*Detrender L61 1 * ( .075* 
Period  [l] + .54) ; 

I1 = Detrender131 ; 

{Advance  the  phase  of  I1  and  Q1 by 90  degrees} 
jI = ( .  0962*11 + .5769*11[2] - .5769*11 L41 - 

jQ = ( .  0962*Q1 + .5769*Q1[2] - .5769*Q1[41 - 
.0962*11[61) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 

{Phasor  addition  for  3  bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .15*12 + .75*12  [l] ; 
Q2 = .15*Q2 + .75*Q2  [l] ; 

(continued) 

Figure 7.3. Dual  Differential  cycle period measurement. 
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{Dual  Differential  Discriminator} 
Valuel = Q2*(12 - I2  [l]) - I2*(Q2 - Q2  [l]); 
If Valuel .01 then Period = 6.2832*(12*12 + 

If Period > 1.5*Period[ll then Period = 

If Period c .67*Period[l] then Period = 

If Period c 6  then Period = 6; 
If Period > 50 then Period = 50; 
Period = .15*Period + .85*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

Plot1 (SmoothPeriod,  "DC") ; 

Q2*Q2) / Valuel; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

End ; 

Figure 7.3. (Continued). 

and Quadrature components are computed with  the Hilbert 
Transformer using procedures identical to those in  the Dual 
Differentiator. These components undergo a complex  averaging 
and  are smoothed in an EMA to avoid any undesired  cross  prod- 
ucts  in  the multiplication step  that follows. The period is solved 
directly from the smoothed Inphase and Quadrature compo- 
nents. The  interim calculation for the denominator is performed 
as Value1 to ensure that  the denominator will not have a zero 
value. The sign of Valuel is reversed relative to  the theoretical 
equation because the differences are looking backward in time. 
The rate change of the cycle  period is limited to be 250 percent 
of the previous  cycle  period,  and the resultant period is  further 
limited  to be greater than G bars  and less than 50 bars.  Finally, 
the period is smoothed for a pleasing  display. 

Total lag through the Dual Differentiator Discriminator cycle 
period measurement consists of 7-bars  lag to compute the original 
Inphase and Quadrature components  and  4-bars lag in each of the 
two EMAs, plus 1.5  bars  for the complex  averaging.  Therefore, the 
total lag is a constant 16.5 bars. The  net smoothing is the same 
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regardless of the measured  period.  Therefore, the Signal-to-Noise 
Ratio,  as  well  as the lag, is constant for all cycle  periods. 

Cycle  Measurement  Comparison 

We now have three techniques to measure cycle  periods 
using complex arithmetic. We only know that they vary in lag 
and that  the lag is relatively long in each  case. The only  way to 
determine the best technique is  to exercise them  in a variety of 
tests. The first test  is designed to see how accurately the cycle 
measurement is made using a perfect sine wave. In Figure 7.4, 
we have created an analytic waveform as a pure cycle  whose 
period increases linearly from 10 to 40 bars  across the screen. 
The cycle length measurements of the three techniques are plot- 
ted in  the first subgraph. This subgraph is scaled  from 10 to 40 
bars, so vertical displacement shows the measured  cycle  period. 

Figure 7.4. Cycle period measurements in response to a chirped analytic 
waveform. 
Chart m t e d  with TradeSta&W@ by Omega Research, Inc. 
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At first glance, it appears that  the Phase Accumulator method is 
less accurate than  the others. However,  recalling that  its lag is 
longer than  the others for  longer  cycle  periods, this apparent 
inaccuracy is due solely to  the lag  associated with the changing 
waveform  period. 

The next stress test for the cycle  period measurers deciphers 
how  rapidly the cycle measurements respond to an instanta- 
neous shift of frequency in  the analytic waveform. To  do this, 
we created a waveform that alternately switches between a 
period of 15 bars and a period of 30 bars. The response of the 
three cycle  period measurers is shown in Figure 7.5. Now  we  can 
see some differences.  As  expected, the Phase Accumulator is the 
slowest to respond to this step in  the cycle  period  because of the 

Figure 7.5. Cycle measurer transient responses to rapid changes of 
cycle period. 
Chart mated with  Tr&tation2oOoi@ by Omega Research, Inc. 
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additional smoothing. Also as expected, the Dual Differentiator 
reacts the fastest in  this  test. However, the Dual Differentiator 
exhibits some overshoot  error. As a result, it appears that  the 
Homodyne  approach has the superior transient response. 

Another significant test finds  how the cycle  period  measurers 
perform  as the Signal-to-Noise  Ratio  degenerates. Market data 
almost always  have a poor  Signal-to-Noise  Ratio,  and the ability 
to make accurate measurements is crucial. In fact, it was this 
stress test  that led to additional smoothing prior to  the multipli- 
cation operations in the Homodyne  and Dual Differentiator 
cycle  period  measurers. Without this smoothing, the perform- 
ance in low  Signal-to-Noise environments was just awful,  pro- 
ducing  measured  cycle  periods  nearly half the correct  period. The 
performance of the cycle  period measurers are  compared in Fig- 
ure 7.6 as a function of Signal-to-Noise  Ratio when measuring a 
theoretical twenty-bar sinewave  signal. It is  clear  from  Figure 7.6 
that  the Homodyne  approach is  not only more accurate at high 
Signal-to-Noise  Ratios but  its performance  degrades  more  grace- 
fully as the noise is increased relative to  the signal strength. 

The real acid test of the cycle  period  measurers'  performance 
determines how well they do when acting on real data. We do 
this  in Figure 7.7. All three tend to give similar measurements 

Cycle Measurement  Accuracy  Versus  SN 

- 
-Rase A ~ ~ u m ~ l a t l M l  

~ "aalferantslor 

-10 6 -3 0 3 6 
SlgnaCto-Nolee Ratlo (dB) 

Figure 7.6. Phase measurer  performance as a function of 
Signal-to-Noise  Ratio. 
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when the market is in a Cycle  Mode.  However, there  is a wide 
difference in  the measurements when the market is  in a Trend 
Mode.  My observations have led me  to conclude that  the Homo- 
dyne is overall more accurate in measurement of cycles when 
the market is in a Trend  Mode. 

For all these reasons I conclude that  the Homodyne Dis- 
criminator is the superior approach. This frequency measurer is 
used throughout the remainder of this book. 

Key Points to Remember 

A basic definition of a cycle is a constant rate change of 
phase. 
The Hilbert Transform  generates Inphase and Quadrature 
components from which the phase at each  bar  can be meas- 
ured. 
The phase rate of change is established as the differential 
phase  from  bar to bar. 
Complex  averaging can be  accomplished  by  applying the 
Hilbert Transformer to both the Inphase and Quadrature 
components, advancing their phase by 90 degrees. The 
phase-advanced components are then algebraically  added to 
their orthogonal counterparts to effect the averaging. 
There are at least three different  ways to measure cycle 
period using the Inphase and Quadrature components. 
The Homodyne Discriminator is the superior cycle  period 
measurer. 
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Chapter 8 

SIGNAL-TO-NOISE W10 
Logic is a system  whereby one may 

go wrong with confidence. 

“CHARLES KE’TTERING 

The signal amplitude is simply the length of the phasor.  Recall- 
ing the Pythagorean Theorem, the length of the phasor is the 
square root of the  sum of the squares of the Inphase and  Quad- 
rature components. We therefore have the signal amplitude on a 
bar-by-bar  basis  after  we take the Hilbert Transform. 

The signal amplitude is not of much use by itself. However, 
if we can estimate the signal amplitude relative to  the market 
noise,  we then have a tool that estimates the quality of our tech- 
nical analysis. With the kind of market data  now  available, let 
us develop a unique definition of noise. A sampled  signal is 
shown in Figure 8.l(a) as a sine wave with  the sampling uncer- 
tainty represented as the high and low of each  bar. The high and 
low is the uncertainty of each of our perfect sinewave sample 
points. We can make good trades  as  long  as our signal amplitude 
i s  much larger than  the average  daily  range of the bars. Another 
case  for the same signal amplitude is shown in Figure 8.l(b). 
When half the average  daily  range  becomes equal to the signal 
amplitude, making money on a trade becomes a crapshoot. 
Under this condition, it is possible to make an entry at  the low 
of the bar (which contains the signal high) and make an exit at 
the high of the bar (which contains the signal low) for  zero  profit. 
We will therefore term  the case where half the average  daily 

79 
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Figure 8.1. (a) Fourteen dB SNR. (b) Zero dB SNR. 

trading range is equal to  the signal amplitude as our zero  decibel 
Signal-to-Noise  Ratio (0 dB SNR) condition. We want the signal 
amplitude to be at least twice the noise amplitude (6 dB SNR) so 
that there exists a reasonable chance to make a profit  from our 
analysis. 

We can  define the noise as a smoothed  average of the daily 
trading  range. We can tolerate a 9-bar  lag to compute such an aver- 
age  because the range tends not to change much, and so the noise 
will be an Exponential  Moving  Average  (EMA) with  an alpha of 
0.1. The trading  range is simply the high minus the low of each 
bar. The EasyLanguage  code to compute the SNR is given in Fig- 
ure 8.2. This code is almost identical to  the one we use for the 
Homodyne Discriminator with a few  additions.  First, the noise is 
computed  as the variable  “Range”  near the top of the code.  Sec- 
ond, the signal  power is computed by  adding the square of the 
Inphase  component to  the square of the Quadrature component. 

The SNR in decibels is calculated in a single line of code near 
the end. The signal  power is divided  by the noise power to get a 
power ratio. The value in decibels is computed as 10 times the 
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Inputs: Price ( (H+L) /2) ; 

If CurrentBar =. 5 then begin 

{Compute ‘Noise” as the average range} 
Range = .l* ( H  - L) + .9*Range[l] ; 

Smooth = (4”Price + 3*Price[l] + 2*Price[2] + 
Price[31 ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[21 - 
.5769*Smooth [41 - .0962*Smooth [6] ) * ( .075* 
PeriodCl] + .54) ; 

{Compute InPhase and Quadrature components} 
Q1 = ( ,  0962*Detrender + .5769*Detrender [2] - 

.5769*Detrender [4] - .0962*Detrender [6] ) * 
( .075*Period [11 + .54) ; 

I1 = DetrenderL31 ; 

{Advance the phase of 11 and Ql by 90 degrees} 
jI = (.0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = (.0962*Ql + .5769*Q1[2] - .5769*Q1[41 - 
.0962*11[6] ) * ( .075*Period Ell + .54) ; 

.0962*Ql [6l ) * ( .075*Period [I] + ,541 ; 
(continued) 

.2. Computing the SNR. 
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{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im <> 0 and  Re <> 0 then  Period = 

If  Period > 1.5*Period[l]  then  Period = 

If  Period c .67*Period[l]  then  Period = 

If  Period < 6  then  Period = 6; 
If  Period > 50  then  Period = 50; 
Period = .2*Period + .8*Period[l]; 

360/ArcTangent  (Im/Re) ; 

1.5*Period [l] ; 

.67*Period  [l] ; 

{Compute  smoothed  SNR  in  Decibels,  guarding 

If  Range > 0 then  SNR = .25*(10*Log((Il*Il + 
against  a  divide  by  zero  error} 

Ql*Ql) / (Range*Range)  /Log(lO) + 6) + 
.75*sm 111 ; 

{Plot  Results} 
Plot1  (SNR, "SNR") ; 
Plot2 (6, "Ref") ; 

End ; 

Figure 8.2. (Continued) 
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logarithm of the power ratio. Since  EasyLanguage takes only 
natural logarithms, the logarithm must be converted to log  base 
10 by being  divided  by the  natural logarithm-of 10. A compen- 
sating term of 6 dB must be  added due to our definition of signal 
to noise. As  defined  earlier, the signal amplitude is the length of 
the phasor.  At 0 dB, the peak-to-peak noise signal is twice the 
amplitude of the signal.  Therefore, when we compute the 0 dB 
case, the ratio is calculated to be lO*Log(1/2)"2 = -6 dB. We 
must  then add 6 dB back into  the computation to remove this 
bias, establishing our definition of 0 dB SNR. 

Assuming the noise is relatively constant, the lag of the 
Signal-to-Noise Indicator is just the 7 bars that result from the 
Hilbert Transformer plus the 3 bars due  to  smoothing of the 
display. 

There is another way to compute the SNR.  Recall that  in 
the derivation of the Homodyne Discriminator, the amplitude 
squared  fell out of the equation automatically when we solved 
for the frequency. In EasyLanguage  code, the amplitude squared 
is the  sum of the variables Re and Im. Therefore, our alternate 
solution for the SNR is obtained by replacing (Il*Il + Ql*Ql)  
with (Re + Im).  That  is the only change in  the code shown in Fig- 
ure 8.3. The  alternate calculation uses the signal information 
that is smoothed by two EMAS, causing a $bar  lag  each, plus the 
lag induced by the complex  averaging of 1.5  bars.  Therefore,  we 
expect the alternate SNR computation to produce a result that is 
smoother and has an additional 7.5-bar  lag  as  compared to  the 
first (or, primary) calculation. The two SNR computations are 
compared in Figure 8.4. Our expectation of a smoother and more 
delayed alternate computation is manifest. 

The 10-bar  lag induced by the computation of the Primary 
SNR makes this calculation unusable for practical trading. The 
additional lag of the Alternate SNR makes its use unthinkable. 
By carefully examining the required conditions, we  can arrive at 
an SNR Indicator that has an acceptable  lag. 

The first condition of the Hilbert  Transform is  that its transfer 
response must have a zero  transfer  response at zero  frequency. 
That means the signal must be  detrended. The first thing we do 
aftgr the initial smoothing is  to use the Detrender  as the Quadra- 
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Inputs : Price ( (H+L) /Z) ; 

Vars : Range ( 0 ) , 
Smooth ( 0  1 , 
Detrender ( 0 )  , 
11 ( 0 )  , 
Q1 (01,  
jI (01,  
jQ(O), 
12 (01 ,  
Q2 (01 ,  
Re (01 ,  
Im(O), 
Period ( 0 )  , 
SmoothPeriod ( 0 )  , 
SNR(0) ; 

If  CurrentBar z 5  then  begin 

{Compute  "Noise"  as  the  average  range} 
Range = .l* (H - L) + .9*Range  [l] ; 

Smooth = (4*Price + 3*Price[ll + Z*Price  [ZI + 
Price[3] 1 / 10;  

Detrender = (.0962*Smooth + .5769*Smooth[Z] - 
.5769*Smooth [41 - .0962*Smooth  [61) * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender[Z] - 

.5769*Detrender  [4] - .0962*Detrender [6l 1 * ( .075* 
Period[l] + .54) ; 

I1 = DetrenderL31 ; 

{Advance  the  phase of I1 and  Q1  by  90  degrees} 
jI = ( .  0962*11 + .5769*11 [Z ]  - .5769*11[4] - 

jQ = ( .  096Z*Q1 + .5769*Q1 [Z ]  - .5769*Q1[4] - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6l ) * ( .075*Period [l] + .54) ; 

{Phasor  addition  for  3  bar  averaging) } 
(continued) 

Figure 8.3. Alternate SNR computation. 
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I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the discriminat&d 

I2 = .2*12 + .8*12[1]; 
Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2 [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im c >  0 and  Re c>  0 then  Period = 

If  Period > l.S*Period[l]  then  Period = 

If  Period c .67*Period[l]  then  Period = 

If  Period c 6 then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[l]; 

{Compute  smoothed SNR in  Decibels,  guarding 

If Range > 0 then SNR = .25*(10*Log(  (Re + 

360/ArcTangent(Im/Re); 

1.5*Period  [l] ; 

.67*Period  [l] ; 

against  a  divide by zero  error} 

Im) / (Range*Range) ) /Log(lO) + 6) + .~~*sNR[I] ; 

{Plot  Results} 

Plot2 (6, "Ref '' ) ; 
Plot1  (SNR, "SNR") ; 

End ; 

Figure 8.3. (Continued). 

ture component of the Hilbert  Transform. If we shorten the 
Detrender to a  2-bar momentum, the resulting lag is only 1 bar. 
Because of the shorter momentum, we  need  a  more  aggressive 
amplitude correction  as  a function of the measured  period. We can 
measure  slowly  varying  periods  as  we  have  done  previously before 
proceeding with  the calculation of the SNR. We also know that if 
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Figure 8.4. The alternate SNR computation is smoother and has more lag than 
the primary computation. 
Chart  created with TradeStattion2000i @ by Omega Research, Inc. 

we take a  Simple  Moving  Average (SMA) over  half the measured 
period, the lag of this average  is  a quarter cycle.  A quarter cycle is 
90 degrees of phase lag-exactly  the lag  needed to create the 
Inphase  component  from the Quadrature  component. This filter- 
ing  also  reduces the dominant cycle amplitude by 2/n, so an addi- 
tional n/2 amplitude correction term must be included in  the 
computation of the Inphase  component. 

All these conditions  have  been  included in  the computation of 
the Enhanced SNR Indicator,  as  described in  the code of Figure 
8.5. In this code, the period of the measured dominant cycle is cal- 
culated in exactly the same manner as  we  calculated it for the Pri- 
mary SNR Indicator.  Near the end of the code, after the dominant 
cycle  is  determined,  we compute the SNR. The Quadrature  com- 
ponent  Q3 is calculated by multiplying the 2-bar momentum of 
the Weighted  Moving  Average (WMA) smoothing by the domi- 
nant cycle amplitude correction  factor. The correction terms were 
derived  by  observing the output amplitude of the 2-bar momen- 



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 
Description : Enhanced  Signal  to  Noise  Ratio  Indicator 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Inputs : Price ( (H+L) /2) ; 

Vars : Smooth (0) , 
Detrender (0) l 
11 (01, 
Q1 (01, 
jI (01, 
jQ(O), 
I2 (01,  
Q2 (01 ,  
Re (01,  
Im(0) I 
Period (0 1 , 
SmoothPeriod (0) , 
count (01 ,  
13 (01, 
Q3 (01,  
Signal (0) , 
Noise (0) , 
SNR(0) ; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price[ll + 2*Price  [21 + 
Price[3] ) / 10; 

Detrender = (.0962*SmoOth + .5769*Smooth[2] - 
.5769*Smooth  [4] - .0962*Smooth  [6] 1 * ( .075* 
Period  [l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender [4] - .0962*Detrender  [6] ) * 
( .075*Period [l1 + .54) ; 

I1 = Detrender  [3] ; 

{Advance  the  phase of I1  and  Q1 by 90  degrees} 
jI = ( .  0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 
(continued) 

Figure 8.5. Enhanced SNR computation. 
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{Phasor  addition  for 3 bar  averaging) } 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 

Im = .2*Im + .8*Im[ll ; 
If  Im c >  0 and  Re c >  0 then  Period = 

If  Period > 1. 5*Period[l]  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .E*Period[l]; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[l]; 

Q3 = .5* (Smooth - Smooth  [21) * ( .1759*SmoothPeriod + 

360/ArcTangent(Im/Re); 

l.S*Period  [l] ; 

.67*Period  [l] ; 

- 4 6 0 7 )  ; 
I3 = 0; 
For  count = 0 to  Int(SmoothPeriod/2) - 1  begin 

End ; 
I3 = 1.57*13 / Int(SmoothPeriod/Z); 

I3 = I3 + Q3  [count] ; 

Signal = I3*13 + Q3*Q3; 
Noise = .l* ( H  - L) * (H - L) * .25 + .9*Noise  [l] ; 
If  (Noise c >  0 and  Signal c>  0) then SNR = 
.33* (lO*Log (Signal/Noise) /Log (10) ) + .67*SNR 

Plot1 (SNR, "SNR'') ; 
Plot2 (6, "Ref") ; 

end ; 

Figure 8.5. (Continued). 
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turn when the chirp  waveform of Figure 7.4 was  applied. The out- 
put amplitudes  for the 10-bar  cycle  period  and the 40-bar  cycle 
period  were  used to compute the straight line compensation 
terms 0.1759  and  0.4607. The Inphase  component I3 is  computed 
as the half-dominant  cycle  moving average multiplied by the 4 2  
amplitude correction term. Again, the noise  power is computed as 
the square of the averaged  range of the bars,  and the signal  power 
is computed  as the sum of the square of the Inphase  component 
and the square of the Quadrature  component. The total lag of the 
Enhanced  SNR Indicator  is  only 4 bars,  compared to  the 10-bar  lag 
of the Primary SNR Indicator. This lag  comprises 1 bar  for the ini- 
tial smoothing, 1 bar  for the computation of the Quadrature com- 
ponent,  and 2 bars  for the final smoothing of the indicator. 

The performance of the Enhanced SNR Indicator is shown in 
Figure  8.6 with  the same data that we used in  the computation 
of the Primary  and Alternate SNR Indicators in Figure  8.4. The 
Enhanced  SNR Indicator now has lag properties that make it 
useful for  trading. 

~~ 

Figure 8.6. The  Enhanced SNR Indicator has minimum  lag. 
Chart mated with Tr&&ti&Om @ by Omega  Reseamb, Inc. 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

1 
Description : Hilbert  Oscillator 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Inputs : Price ( (H+L) /2) ; 

Vars : Smooth (0) , 
Detrender (0) , 
I1 (0) , 
Q1 (0) , 
jI (01,  
jQ(O), 
I2 (01 ,  
Q2 ( O ) ,  
Re ( 0 )  , 
Im(O), 
Period ( 0 )  , 
SmoothPeriod (0) , 
count (0) , 
13 (01, 
Q3 (0) ; 

If CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price  [l] + 2*Price[2] + 

Price  [3] ) / 10; 
Detrender = (.0962*Smooth + .5769*Smooth[2] - 

.5769*Smooth  [4] - .0962*Smooth  [6] ) * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender [41 - .0962*Detrender  [6] ) * 
( .075*Period [l] + .54) ; 

I1 = Detrender [3] ; 

{Advance the phase of I1  and  Q1  by 90 degrees} 
jI = ( .0962*11 + .5769*11[2] - .5769*11[4] - 

.0962*11[61) * ( .075*Period[ll + .54) ; 

.0962*Q1[61) * ( .  075*Period[ll + . 54 )  ; 
jQ = ( .  0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 

(continued) 

Figure 8.7. Hilbert Oscillator computation. 
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{Phasor  addition  for  3  bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*42 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2 [l] ; 
Im = I2*Q2 [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[ll; 
If  Im c >  0 and  Re c >  0 then  Period = 

If  Period > 1.5*Period[ll  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

Q3 = .5* (Smooth - Smooth  [21) * ( .1759*SmoothPeriod + 

360/ArcTangent(Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

.4607) ; 
I3 = 0; 
For  count = 0 to  Int(SmoothPeriod/2) - 1 begin 

End ; 
I3 = 1.57*13 / Int(SmoothPeriod/2); 
Valuel = 0; 
For  count = 0 to  Int(SmoothPeriod/4) - 1 begin 

End ; 
Valuel = 1.25*Valuel / Int(SmoothPeriod/4); 

Plot1  (13,  "I") ; 
Plot2  (Valuel,  "IQ" ) ; 

I3 = I3 + Q3  [count] ; 

Valuel = Valuel + Q3  [count] ; 

End ; 

Figure 8.7. (Continued). 
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While not related to SNR, the reduced  lag  procedure that 
leads to  the Enhanced SNR Indicator suggests a way to develop 
a fast and responsive oscillator. If we compute a quarter-cycle 
moving  average of Q3, it will lag Q3 by 45 degrees. The half- 
cycle  moving  average of Q3 lags Q3 by 90 degrees.  Since Q3 
leads the cycle component of the signal by 90 degrees, it follows 
that  the two moving  averages will cross 22.5  degrees in advance 
of the crests and  valleys of a theoretically perfect  cycle. Al- 
though this  will  not be a leading indicator because of the 2-bar 
lag  required to compute Q3, it does  prove  itself to be  superior to 
most currently available oscillators. The code to compute the 
Hilbert Oscillator is given in Figure  8.7,  and its performance is 
shown in Figure  8.8. The bandwidth for the computation of 
Value1 is twice the bandwidth of 13. Therefore, the amplitude 
compensation will be  less, approximately the square root of 
1.57, which is about 1.25. 

Figure 8.8. The Hilbert  Oscillator identifies every major turning point. 
Cbart mated witb TradeSttiotQOOOi @ by Omega Researcb, Inc. 
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Key Points to Remember 

The average  high to low range of the bars  can  be  considered 
noise because the range is the uncertainty of making good 
Cycle  Mode trades. 
The phasor amplitude is the signal amplitude. 
Cycle  Mode trading should be  avoided when the SNR is 

The Primary SNR Indicator has a lag of 10 bars. 
The Alternate SNR Indicator has an additional 7.5 bars of 

The Enhanced SNR Indicator reduces  lag to only 4 bars. 
A useful oscillator results from minimizing Hilbert Trans- 

below 6 dB. 

lag, thus making a total lag of 17.5 bars. 

form  lag. 



This Page Intentionally Left Blank



THE SINEWAW INDICATOR 
A painter  can  hang his pictures, 

but a w i t e r   c a n  only hang  himsel f .  

-EDWARD DAHLBERG 

As noted in Chapter 6, the Hilbert Transform synthesizes the 
Inphase and Quadrature components from the analytic wave- 
form. We can then immediately compute the phase of the signal 
by taking the arctangent of the ratio of these components. In 
principle, that should tell  us where we are positioned within the 
cycle. Unfortunately, this  is  not  true.  The first problem is  that 
the Hilbert Transform induces a lag of 7 bars. That lag is a sub- 
stantial portion of most tradable  cycles. The second  problem is 
that even that phase measurement is typically very  noisy, 
requiring many more bars of data to be used. The lag thus ren- 
ders the phase measurement made directly from the Hilbert 
Transform unusable. 

However, the Hilbert Transform can be  used to measure the 
dominant cycle  period.  Since the dominant cycle  period is a 
slowly  varying function of time, the lag of this measurement is 
often acceptable. We assume this to be the case  for our analyses. 
Knowing the dominant cycle  period, we can heterodyne the per- 
fect dominant cycle with the original  price data. Heterodyning 
produces the  sum and difference  frequencies.  Since both the 
price data and the dominant cycle have the same frequency, we 
can isolate the direct current (DC, or zero frequency) component 
by filtering. This process  gives the phase of the dominant cycle 

95 
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without lag. Thus, we can compute indicators having  zero  lag 
from this information. 

The EasyLanguage  code to measure dominant cycle  phase is 
described with reference to Figure  9.1. The majority of the code 
computes the Hilbert Transform  and finds the dominant cycle 
period using the preferred  Homodyne Discriminator. The phase 
computation part of the code  begins with a comment line as a 
flag. The first step is to smooth the price  data.  Any components 
having a cycle  period less than 6 bars are not desired  and should 
be  removed  before the computations commence. We remove 
them by employing a 4-bar  Weighted  Moving  Average [WMA). 
The WMA introduces l bar of lag that we will want to remove 
by compensation later in  the calculations. Next, the smoothed 
data are multiplied by the real (cosine) component of the domi- 
nant cycle  and independently by the imaginary [sine) compo- 
nent of the dominant cycle. The products are summed then over 
one full dominant cycle. We compute the phase  angle  as the arc- 
tangent of the ratio of the imaginary part to the real part. The 
phase  increases  from left to right across the chart. A 90-degree 
reference shift is immediately introduced. Next, we must 
remove the  l-bar lag that was introduced by the smoothing of 
the price. This  is done by  adding the phase corresponding to a 
l-bar lag of the smoothed dominant cycle  period. 

Finally, the phase ambiguity is removed  for those cases  where 
the imaginary part is less than zero,  providing a 360-degree  phase 
presentation. Normally, we  think of the phase  as  going  from 0 to 
360  degrees  and then repeating for the next cycle.  However, we 
perform the cycle  wraparound at 315  degrees  because there is a 
tendency  for the phase to be near 0 degrees when the market is in 
a downtrend. If the wraparound were at 360  degrees, the swing 
from the bottom of the subgraph to the top  provides  less than a 
pleasing  display. 

The way the phase  display  behaves in a Trend  Mode can 
potentially provide some useful information to a trader.  First, 
phase tends to stop advancing when the market is in a Trend 
Mode. That is, there is no rate of change  and,  therefore, no cycle. 
The phase tends to rest near 180 degrees when the market is  in 
an uptrend and tends to rest near 0 degrees when the market is 
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Inputs:  Price ( (H+L) /2) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 )  , 
I1 (01 ,  
Q1 ( 0 )  , 
jI (01 ,  
jQ(0) I 
I2 (01 ,  
Q2 (01,  
Re ( 0 )  , 
Im(0) I 
Period ( 0 )  , 
SmoothPeriod ( 0  ) , 
SmoothPrice ( 0  , 
DCPeriod ( 0 )  , 
RealPart ( 0 )  , 
ImagPart ( 0 )  , 
count ( 0 )  I 
DCPhase ( 0 )  ; 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price  [l] + 2*Price[21 + 
~rice[3]) / 10;  

Detrender = (.0962*Smooth + .5769*Smooth[21 - 
.5769*Smooth  [4] - .0962*Smooth  [6l) * ( .075* 
Periodrl] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender  [6l) * ( .075* 
Period[l] + .54) ; 

I1 = Detrender  [3] ; 

{Advance  the  phase of I1  and  Q1  by  90  degrees} 
jI = ( .0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = (.0962*Q1 + .5769*Q1 L21 - .5769*Q1[41 - 
.0962*11[6] ) * ( .075*Period[ll + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 
(continued) 

Figure 9.1. Computing the dominant cycle phase. 
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{Phasor  addition  for  3  bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 

Im = .2*Im + .8*Im[l] ; 
If  Im c>  0 and  Re c >  0 then  Period = 

If  Period 5 1.5*Period[l]  then  Period = 

If  Period c .67*Period[l]  then  Period = 

If  Period c 6 then  Period = 6; 
If  Period > 50  then  Period = 50; 
Period = .2*Period + .8*Period[l]; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[l]; 

{Compute  Dominant  Cycle  Phase} 
SmoothPrice = (4*Price + 3*Price[l] + 2*Price[2] + 

DCPeriod = IntPortion(SmoothPeriod + .5); 
RealPart = 0; 
ImagPart = 0; 
For count = 0 To DCPeriod - 1 begin 

3 6 0 /ArcTangent ( Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

Price[31) / 10; 

RealPart = RealPart + Cosine(360 * count / 

ImagPart = ImagPart + Sine(360 * count / 
DCPeriod) * (SmoothPrice  [count] ) ; 

DCPeriod) * (SmoothPrice  [count] ) ; 
End; 
If  AbsValue(Rea1Part) > 0.001 then  DCPhase = 

If  AbsValue(RealPart1 c= 0.001 then  DCPhase = 90 * 

DCPhase = DCPhase + 90; 

Arctangent(1magPart / Realpart); 

Sign ( ImagPart) ; 

(continued) 

Figure 9.1. (Continued). 
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{Compensate for one bar lag of the Weighted 

DCPhase = DCPhase + 360 / SmoothPeriod; 
Moving  Average} 

If ImagPart e 0 then DCPhase = DCPhase + 180; 
If DCPhase > 315 then DCPhase = DCPhase - 360; 

Plot1 (DCPhase, "Phase") ; 

End ; 

Figure 9.1. (Continued). 

in a downtrend. The reason  for this  is  that although the price 
data have  been  detrended, there is still some residual trend 
across the 6 bars of the Detrender. The  summation of the prod- 
uct of the pure trend to  the complex components of the domi- 
nant cycle can be thought of as similar to  the integrals 

2R 
I m = /  x 

0 
Sin(x)dx -27c 

2R 
Re = / x Cos(x)dx = 0 

0 

The ratio of the RealPart to  the Imaginary will always  be a 
small number when the market is in a Trend  Mode.  However, 
the sign of that number will be  negative when the market is in 
an uptrend and positive when the market is in a downtrend. As 
a result, the phase will be near 180 degrees in uptrending mar- 
kets and  near 0 degrees in downtrending markets. 

We obtain the Sinewave Indicator by plotting the sine of the 
measured  phase  angle. This gives us an oscillator that always 
swings between the  limits of -1 and +l. We enhance the usabil- 
ity of this oscillator by plotting the sine of the phase  angle 
advanced  by 45 degrees. The effect of plotting these two lines is 
shown for both the phasor and time-domain presentations in 
Figure 9.2. Adding 45 degrees  clearly  advances the phasor  from a 
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Figure 9.2. Phasor and time-domain views of the Sinewave 
Indicator. 

&-degree slant  to the vertical position. This phase  advance 
means the LeadSine  waveform will crest before the sine crests. 
The LeadSine  and  Sine lines cross 22.5 degrees,  or l/l6th of a 
cycle,  before the turning point of the cycle is reached. If the mar- 
ket has a cycle of 16  bars or less, this  is a signal to  enter or exit a 
trade immediately. If the market has a longer  cycle, there is 
some built-in anticipation time before  you pull the trigger. 

Compared to conventional oscillators such as the Stochastic 
or Relative Strength Indicator (RSI), the Sinewave Indicator has 
two major  advantages. These are 

1. The Sinewave Indicator anticipates the Cycle  Mode turning 
point rather  than waiting for confirmation. 

2. The phase  does not advance when the market is in a Trend 
Mode.  Therefore, the Sinewave Indicator tends to  not give 
false whipsaw signals when the market is in a Trend  Mode. 

An additional advantage is that the anticipation signal is ob- 
tained strictly by mathematically advancing the phase. Momen- 
tum is  not employed.  Therefore, the Sinewave Indicator signals 
are no more noisy than  the original  signal. 

The code to  compute  and  display the Sinewave  Indicator  is 
given in Figure  9.3. This EasyLanguage  code is identical to the code 
given  for the phase in Figure  9.1  except  for the plot statements. 

The Phase  and  Sinewave  Indicators are plotted against both 
theoretical analytic waveforms  and  real-world  data to demon- 
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Inputs:  Price ( (H+L) /2) ; 

Vars:  Smooth(0) , 
Detrender ( 0 )  I 
I1 ( 0 )  I 
Q1 (01 ,  
jI (01,  
jQ(01, 
I2 ( 0 )  , 
Q2 (01 ,  
Re (01 ,  
Im(O), 
Period ( 0 )  , 
SmoothPeriod ( 0 )  , 
SmoothPrice ( 0 )  , 
DCPeriod ( 0 )  , 
RealPart ( 0 )  , 
ImagPart ( 0 )  , 
count ( 0 )  , 
DCPhase ( 0 )  ; 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price  [l] + 2*Price[2] + 
Price[3]) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
.5769*Smooth  [4] - .0962*Smooth  [61) * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender  [6l) * 
( .075*Period [l1 + .54) ; 

I1 = Detrender [31 ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
jI = ( .  0962*11 + .5769*11  [2] - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1  [2] - .5769*Q1[4] - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .  075*Period[ll + .54) ; 

{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

(continued) 

Figure 9.3. EasyLanguage  code  to  compute  the  Sinewave  Indicator. 
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{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2 [l] ; 

{Homodyne  Discriminator} 
Re = I2*12 [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re [l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im c >  0 and  Re c> 0 then  Period = 

If  Period > 1.5*Period[ll  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period > 50  then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

{Compute  Dominant  Cycle  Phase} 
SmoothPrice = (4*Price + 3*Price[ll + 2*Price[21 + 

DCPeriod = IntPortion(SmoothPeriod + .5) ; 
RealPart = 0; 
ImagPart = 0; 
For  count = 0 To  DCPeriod - 1 begin 

360/ArcTangent  (Im/Re) ; 

1.5*Period [l] ; 

.67*Period  [l] ; 

Pricer31 1 / 10; 

RealPart = RealPart + Cosine(360 * count / 

ImagPart = ImagPart + Sine(360 * count / 
DCPeriod) * (SmoothPrice  [count] ) ; 

DCPeriod) * (SmoothPrice  [count] ) ; 
End ; 
If  AbsValue(Rea1Part) > 0.001 then  DCPhase = 

If  AbsValue(Rea1Part) c= 0.001 then  DCPhase = 90 * 

DCPhase = DCPhase + 90; 

Arctangent(1magPart / Realpart); 

Sign ( ImagPart) ; 

(continued) 

Figure 9.3. (Continued). 
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{Compensate  for one  bar lag  of the Weighted 

DCPhase = DCPhase + 360 / SmoothPeriod; 
Moving  Average} 

If ImagPart c 0 then DCPhase = DCPhase + 180; 
If DCPhase > 315 then DCPhase = DCPhase - 360; 

Plot1 (Sine  (DCPhase) , "Sine") ; 
plot2 (Sine  (DCPhase + 4 5 )  , "Leadsine" ; 

End ; 

Figure 9.3. (Continued). 

strate their performance.  Figure  9.4  shows a theoretical sinewave 
analytic waveform  whose  period  increases linearly from 10 to 40 
bars. The Sinewave  and  Phase  Indicators  are  displayed in  the two 
subgraphs. Note how the phase rate of change  decreases as the 
cycle  period  becomes  longer. The dotted line is a typical point of 
reference, illustrating that the analytic waveform  and the Sine 
line of the Sinewave  Indicator  crest  simultaneously,  and the 
measured  phase is 90  degrees at  this point. The Leadsine  always 
crosses the Sine line before the turning point in  the cycle,  giving 
advance indication of the cyclic turning point. The amount of 
advance  warning relative to the length of the cycle is less for the 
shorter cycles. 

A real-world  trading  scenario is depicted in Figure  9.5. The 
market is in a Trend  Mode  for  nearly the entire left half of the 
chart, as  identified by the lack of phase rate of change  and  lack of 
crossovers by the Sinewave  Indicator. The Cycle  Mode of the 
chart is identified by the rectangle. The Cycle  Mode starts when 
the phase rate of change is approximately the same as the phase 
rate of change of the dominant cycle. The Cycle  Mode  ends when 
the phase rate of change  becomes  negative-a  clear  impossibility. 
During the Cycle  Mode  period, the Sinewave  Indicator  gives 
three buy  signals  and two sell signals. All are  excellent  except the 
last one, which almost always  happens when the cycle  fails. 
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Figure 9.4. The  Sinewave Indicator always  gives an advanced turning- 
point warning. 
Chart mated with  Tradesttion2GOOi @ by Omega Research, Inc. 

~ 

Figure 9.5. The  Sinewave Indicator gives correct Cycle  Mode  signals. 
Chart mated with  TraakStati~OOOi @ by Omega  Research, Inc. 
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Key Points to Remember 

The phase computed from the Hilbert Transform cannot be 
used directly because of the lag that results from computing. 
The cycle  period measurement is a slowly  varying function 
of time and  may  be  used  as the dominant cycle. 
The phase of the dominant cycle is computed by heterodyn- 
ing the complex dominant cycle with  the smoothed analytic 
waveform  and taking the arctangent of the complex  compo- 
nents. 
The phase  hovers near 0 degrees in downtrends and near 180 
degrees in uptrends. 
The Sinewave Indicator consists of the Sine of the Dominant 
Cycle  phase and the Sine of the Dominant Cycle  phase 
advanced  by 45 degrees (Leadsine). 
The Sinewave Indicator gives entry and exit signals 1/16th of 
a cycle  period in advance of the cycle turning point. 
The Sinewave Indicator seldom  gives  false  whipsaw  signals 
when the market is in a Trend  Mode. 
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Never ~ i s t a ~ e  motion for action. 

-ERNEST HEMINGWAY 

Perhaps the term i ~ ~ ~ f f ~ ~ f f ~ e o ~ s  is a bit presumptuous to apply 
to the concepts we discuss in this chapter. Nonetheless, the 
term is somewhat appropriate in that our technology enables us 
to compute a continuous trendline from which we can rapidly 
assess market action. As derived from the Drunkard’s Walk 
problem in Chapter I, our model says the market consists of a 
Trend Mode and a Cycle Mode. It is more accurate to describe 
the general market as a combination of these two modes. Fur- 
thermore, in Chapter 3 we prove that we can completely elimi- 
nate the dominant cycle component by taking a Simple Movin 
Average ~~~1 over the period of the cycle. If we take a simp1 
average over the period of the dominant cycle on a bar-by-bar 
basisbecause we have been able to identify a continuously 

dominant cycle-we basically have a variable-len~th 
moving average. This movin~ average is important because the 
dominant cycle component is always notched out. It follows 
that if the composite analytic waveform consists of only a trend 
component and a cycle component, and if we remove the cycle 
component, the residual must be the trend. Of course, this is not 
precisely true, because there will always be components other 
than the dominant cycle present. However, this is a workable 
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solution for trading purposes  because the secondary  cycles usu- 
ally have a small amplitude. 

We employ a 4-bar  Weighted  Moving  Average  (WMA) in con- 
junction with  the Instantaneous Trendline to give an indication 
of when the price  crosses the Instantaneous Trendline. Having 
only a l-bar lag, the 4-bar WMA is useful for this purpose. One 
way to recognize the onset of a trend is  to  count backward  from 
the current bar to  the first crossing of the WMA and the Instan- 
taneous Trendline. If the  count  is greater than a half-dominant 
cycle,  you know that  the market is in a Trend  Mode. The reason 
for this is that if the market were in a Cycle Mode,  we  would 
expect the price to cross the Instantaneous Trendline every  half 
cycle.  Failure to do this is a clear indication of a Trend  Mode. In 
fact, an amended rule might say that  the onset of a Trend  Mode 
is declared if the price has crossed more than a quarter cycle ago 
and  does not appear to even try  to head  back  across the Instan- 
taneous Trendline. This amended rule  will get  you into a Trend 
Mode trade much earlier.  However,  as with  all anticipatory sig- 
nals,  you will get  caught in an error  once in a while. A Trend 
Mode  is  over when the Smoothed  Price  crosses the Instanta- 
neous Trendline. 

Because we are taking  an SMA over the  entire period of the 
dominant cycle, the lag of an  Instantaneous Trendline is one- 
half the dominant cycle. This lag is unavoidable. It  is also pos- 
sible to  take  an SMA over  half the period of the dominant 
cycle. The half-period average has a quarter-cycle lag. The 
result  is that  the quarter-cycle average will cross the Instanta- 
neous Trendline just as the Sinewave Indicator reaches a peak 
or  valley. The half-period average crossing the Instantaneous 
Trendline can be used as a confirmation signal, which is 
another way of identifying when the price has reached a cyclic 
turning  point. 

The EasyLanguage  code to compute the Instantaneous 
Trendline is given in Figure 10.1. As in computations in previ- 
ous  chapters, the code starts  with  the Hilbert Transform  and 
measures the dominant cycle using the Homodyne Discrimina- 
tor algorithm. The Instantaneous Trendline is computed by 
averaging the price  over the integer number of bars of the 
smoothed dominant cycle. This average is smoothed in a 4-bar 



Inputs:  Price ( (H+L) /2) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 1 , 
I1 (01, 
Q1 (01, 
jI (01,  
jQ(0) l 
I2 ( 0 )  l 
Q2 (01,  
Re (01, 
Im(0) I 
Period ( 0  1 , 
SmoothPeriod ( 0 )  , 
SmoothPrice ( 0 )  , 
DCPeriod ( 0 )  I 
RealPart ( 0 )  , 
ImagPart ( 0 )  , 
count ( 0 )  , 
ITrend ( 0 )  , 
Trendline ( 0 ; 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price[l] + 2*Price [23 + 
Price L31 ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
.5769*Smooth [41 - .0962*Smooth  [6] ) * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender  [6] ) * ( .075* 
Period  [l] + .54) ; 

I1 = Detrender  [3] ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
jI = (.0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 

{Phasor  addition  for  3  bar  averaging) } 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

(continued) 

Figure 10.1. EasyLanguage  code  to  compute  the  Instantaneous  Trendline. 
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{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2[1]; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2[1] - Q2*12  [l] ; 
Re = .2*Re + .8*Re[l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im c>  0 and  Re c >  0 then  Period = 

If  Period z 1.5*Period[ll  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .%*Period + .8*Period[l]; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[l]; 

{Compute  Trendline  as  simple  average  over  the 

DCPeriod = IntPortion(SmoothPeriod + .S); 
ITrend = 0; 
For  count = 0 to  DCPeriod - 1 begin 

end ; 
If  DCPeriod 0 then  ITrend = ITrend / DCPeriod; 
Trendline = (4*ITrend + 3*ITrend[ll + 

If  CurrentBar c 12  then  Trendline = Price; 

SmoothPrice = (4*Price + 3*Price[l] + 

360/ArcTangent(Im/Re) ; 

l.S*Period  [l] ; 

.67*Period  [l] ; 

measured  dominant  cycle  period} 

ITrend = ITrend + Price  [count] ; 

2*ITrend[2] + ITrend[31 ) / 10; 

2*Price[2] + price [3] ) / 10; 

Plot1  (Trendline,  "Trendline") ; 
Plot2  (SmoothPrice,  "SP" ) ; 

End ; 

Figure 10.1. (Continued). 
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WMA to make the Instantaneous Trendline a little smoother. 
The price  itself is also smoothed in a 4-bar WMA to provide the 
second line of this indicator. 

The actions of the Instantaneous Trendline  and the Smoothed 
Price curves are shown in Figure 10.2. The Smoothed  Price 
crosses the Instantaneous Trendline during the third week in 
August. The measured dominant cycle  period during this  time 
was about 22 bars (see Figure 7.7). Since the price  does not even 
try to come back to  the Instantaneous Trendline, we declare the 
trend in force about five  days  after the crossing, around the first 
of September.  According to  this indicator, the trend stays in 
force until the Smoothed  Price  crosses the Instantaneous Trend- 
line again, in mid-January. Other indications from the Sinewave 
Indicator would  have  declared the trend over  near the first of 
December,  however.  With  reference to Figure 9.5, the Sinewave 
Indicator line crossing  early in December  signals a Cycle  Mode 
buy  signal. 

Figure 10.2. The Instantaneous Trendline  clearly  shows  how to trade the 
trend. 
Chart mated with TradeStation 2OLW@ by Omega R8search, Inc. 
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Key Points to Remember 

The Instantaneous Trendline is generated by removing the 
dominant cycle component of the composite waveform. 
This  is done taking a simple average  over the period of the 
dominant cycle. 
A trend is declared in force if the SmoothPrice has not 
crossed the Instantaneous Trendline within the previous 
half-dominant cycle. 
As a faster indication of the trend onset, a trend is declared if 
the Smoothed  Price has not crossed the Instantaneous 
Trendline within  the previous quarter-dominant cycle and 
does not appear to  start  in  the crossing direction. 
A trend is over when the SmoothPrice  crosses the Instanta- 
neous Trendline. 



IDENTIFYING MARKET MODES 
Invention is the  mother of necessity. 

"THORSTEIN VEBLEN 

The simplified  model of the market, derived  from the Drunk- 
ard's  Walk problem, has only two modes-the  Cycle  Mode  and 
the Trend Mode. Through the derivation of the Sinewave  Indica- 
tor and the Instantaneous Trendline,  we  have shown several 
ways to  estimate which mode the market may  have for a given 
moment. As with  most technical indicators, the decision point 
between modes is  not clear-cut. In fact, trying to  automate  the 
decision often leads to a great  deal of chatter and  rapid  back  and 
forth switching of decisions. 

Since the Cycle  Mode exists for the smallest fraction of time 
and  since  most  traders make the most money  following a trend 
rather than a cycle, it is best to assume that  the market is in a 
Trend  Mode  unless  some  very  specific  criteria  are met. There are 
only two criteria to establish a Cycle  Mode.  First, a Cycle  Mode 
exists for the period of a half-dominant  cycle  after the crossing of 
the two  Sinewave  Indicator lines. Second, a Cycle  Mode  exists if 
the measured  phase rate of change is more than two-thirds the 
phase rate of change of the dominant cycle  (3GO/Period) and is less 
than 1.5 times the phase rate of change of the dominant cycle. 

There is another condition that defines a Trend  Mode. This 
condition is derived  from  pragmatic  observation, not theoretical 
considerations.  When the market makes a major  reversal, it often 
does this  with great  vigor.  When this occurs, the prices  have a 

113 
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wide separation from the Instantaneous Trendline.  When the 
prices are widely  separated  from the Instantaneous Trendline, it 
is possible  for the Cycle  Mode conditions to be  met-but the 
Cycle  Mode identification is clearly incorrect. I have  therefore 
inserted another overriding rule for these cases. That rule is  that 
if the SmoothPrice (the 4-bar WMA  of the Price) is separated by 
more than 1.5 percent  from the Instantaneous Trendline, then 
the correct market mode is  the Trend Mode. 

We can  apply the mode identification in a Tradestation or 
Supercharts Paintbar to visually identlfy the current market 
mode.  In addition, the mode identification can be  used as a code 
fragment as part of an automatic trading system to establish 
which set of trading rules will be  employed. The EasyLanguage 
code to compute the market mode  and identify it as a paintbar is 
given in Figure 11.1. 

Inputs : Price ( (H+L) / 2 )  ; 

Vars : Smooth (0) , 
Detrender (0) I 
I1 (01 ,  
Q1 (01,  
jI (01 ,  
j Q ( O ) ,  
I 2  (0) I 
Q2 (0) I 
Re(O), 
Im(O), 
Period (0) , 
Smoothperiod ( 0 1 , 
SmoothPrice (0) I 
DCPeriod ( 0) , 
Real Part (0 , 
ImagPart ( 0 1 I 
count ( 0 1 ,  
DCPhase (0) , 

(continued) 

Figure 11.1. EasyLanguage  code  to  identify  the  market  mode. 
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Itrend(O), 
Trendline ( 0 )  , 
Trend ( 0 )  , 
DaysInTrend ( 0 )  ; 

If  CurrentBar  5  then  begin 
Smooth = (4*Price + 3*Price[l] + Z*Price [21 + 
Price  [3] ) /lo; 

Detrender = (.0962*Smooth + .5769*Smooth[21 - 
.5769*Smooth[4] - .0962*Smooth  l611 * ( .075* 
Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender [21 - 

.5769*Detrender [4] - .0962*Detrender  [6l) * ( .075* 
Period[ll + .54) ; 

I1 = Detrender 131 ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
jI = (.0962*11 + .5769*11  [2] - .5769*11[4] - 

jQ = (.0962*Q1 + .5769*Q1[21 - .5769*Q1[41 - 
.0962*11[6] ) * ( .  075*Period[ll + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 

{Phasor  addition  for 3 bar  averaging) } 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + QZ*QZ  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im c>  0 and  Re c >  0 then  Period = 
3 6 0 /ArcTangent ( Im/Re) ; 

(continued) 

Figure 11.1. (Continued). 
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If  Period > l.S*Period[l]  then  Period = 

If  Period  .67*Period[ll  then  Period = 

If  Period < 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[l]; 
Smoothperiod = .33*Period + .67*SmoothPeriod[ll; 

{Compute  Dominant  Cycle  Phase} 
SmoothPrice = (4*Price + 3*Price[ll + 2* 

DCPeriod = IntPortion(SmoothPeriod + .S); 
RealPart = 0; 
ImagPart = 0; 
For  count = 0 To  DCPeriod - 1 begin 

1.5*Period  [l] ; 

.67*Period  [l] ; 

Price  [21 + Price  [3] ) /lo; 

RealPart = RealPart + Cosine(360 * count 

ImagPart = ImagPart + Sine(360 * 
/ DCPeriod) * (SmoothPrice  [count] ) ; 

count/DCPeriod) * (SmoothPrice  [count] ) ; 

End ; 
If  AbsValue(Rea1Part) >O then  DCPhase = 

If  AbsValue(Rea1Part) c= 0.001 then  DCPhase = 90* 

DCPhase = DCPhase + 90; 

{Compensate  for  one  bar  lag of the  Weighted 

DCPhase = DCPhase + 360 / SmoothPeriod; 

If  ImagPart 0 then  DCPhase = DCPhase + 180; 
If  DCPhase > 315  then  DCPhase = DCPhase - 360; 

{Compute  Trendline  as  simple  average  over  the 
measured  dominant  cycle  period} 

ITrend = 0; 
For  count = 0 to  DCPeriod - 1 begin 

End ; 

Arctangent  (ImagPart / RealPart) ; 

Sign ( ImagPart ) ; 

Moving  Average} 

. ITrend = ITrend + Price  [count] ; 

(continued) 

Figure 11.1. (Continued). 
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If  DCPeriod > 0 then  ITrend = ITrend / DCPeriod; 
Trendline = (4*ITrend + 3*ITrend[ll + 

If  CurrentBar c 12  then  Trendline = Price; 

{Assume  Trend  Mode} 
Trend = 1; 

{Measure  days  in  trend  from  last  crossing  of  the 

If  Sine(DCPhase)  Crosses  Over  Sine(DCPhase + 45) 

2*ITrend[2] + ITrendl31)  /lo; 

Sinewave  Indicator  lines} 

or  Sine  (DCPhase)  Crosses  Under  Sine(DCPhase + 
45)  Then  begin 

DaysInTrend = 0; 
Trend = 0; 

End ; 
DaysInTrend = DaysInTrend + 1; 
If  DaysInTrend C .5*SmoothPeriod  then  Trend = 0; 

{Cycle  Mode if delta  phase  is +/-  50%  of  dominant 

If  SmoothPeriod c >  0 and  (DCPhase - DCPhase[ll > 
cycle  change  of  phase} 

.67*360/SmoothPeriod  and  DCPhase - DCPhase[ll < 
1.5*360/SmoothPeriod)  then  Trend = 0; 

{Trend  Mode  if  prices  are  widely  separated  from 

If  AbsValue ( (SmoothPrice - Trendline)  /Trendline) >= 
the  Trendline} 

.015  then  Trend = 1; 

{Paint  Bar if in  the  Cycle  Mode} 
If  Trend = 0 then  begin 

Plot1  (high,  "high" 1 ; 
Plot2  (low,  "low") ; 

End ; 

End ; 

Figure 11.1. (Continued). 
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Key Points to Remember 

Assume the market is in a Trend  Mode unless specific crite- 
ria are met. 
A Cycle  Mode exists for a half-dominant cycle  after the cross- 
ing of the Sinewave  Indicator lines or when the measured 
phase rate of change is within 250 percent of the phase rate 
of change of the dominant cycle. 
A Trend  Mode is declared if the 4-bar WMA is separated from 
the Instantaneous Trendline by more than 1.5 percent. 
The  market mode  can be identified as a paintbar or  used  as a 
code fragment in an automatic trading system. 



DESIGNING A PROFITABLE 
TRADING SYSTEM 

W t h  and science triumph again  over ignorance 
and superstition. 

-JOHN EHLERS 

In this chapter we  develop a completely automatic trading sys- 
tem called the SineTrend Automatic System  based on the rules 
that we develop in  the previous chapters. Our fundamental 
approach is to trade using the Trend  Mode rules when the mar- 
ket  is in a Trend  Mode  and trade using the Cycle  Mode rules 
when the market is in a Cycle  Mode. The code shown in Figure 
12.1 is a complete trading system using these rules strictly from 
a theoretical perspective. There is absolutely no accommodation 
for  real trading situations or  specific personalities of the com- 
modity or stock being  traded. 

This code  was first applied to  the Treasury Bonds futures 
contract because the system trades both long  and short with 
equal facility. The Treasury Bond data were a back-adjusted  con- 
tinuous contract covering the period  from 9 July 1984 to 16 June 
2000, a period of 15.54 years. (A back-adjusted continuous con- 
tract is created  by stringing real contracts together and adjusting 
all prices in  the previous contract by the price  difference 
between contracts at  the rollover date. The process is repeated 
for  each new previous contract.) Adding a $1,000 money- 
management stop, the results right out of the box are shown in 

l19 
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Inputs : Price ( (H+L) /2) ; 

Vars:  Smooth(0) , 
Detrender (0 , 
I1 (0) I 
Q1 (0) I 
j I ( 0 )  I 
j Q ( O ) ,  
I2 (01 ,  
Q2 ( O ) ,  
Re (0) , 
Im(O), 
Period (0) , 
Smoothperiod (0) , 
SmoothPrice (0 1 , 
DCPeriod (0) , 
RealPart (0) , 
ImagPart (0 , 
count (01 ,  
DCPhase (0 1 , 
DCSine (0  ) , 
LeadSine (0 1 , 
Itrend(O), 
Trendline ( 0) , 
Trend(O), 
DaysInTrend ( 0 ) ; 

If CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price[ll + Z*Price[21 + 
Pricer31 ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[21 - 
.~769*Smooth [4] - .0962*Smooth  [61) * ( .075* 
Period[ll + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender 121 - 

.5769*Detrender  [4] - .0962*Detrender  [61 * 
( .075*Periodlll + .S41 ; 

I1 = Detrender[3] ; 
(continued) 

Figure 12.1. EasyLanguage code for an Automatic  SineTrend  Trading  System. 
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{Advance  the  phase  of I1 and  Q1  by 90 degrees} 
jI = ( .  0962*11 + .5769*11[2] - .5769*11[41 - 

jQ = (.0962*Ql + .5769*Q1[2] - .5769*Q1[41 - 
.0962*11[6] ) * ( .075*Period[l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 

{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the I and Q components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] . ; 
Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im < Z  0 and  Re <> 0 then  Period = 

If  Period > 1.5*Period[ll  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period < 6 then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

{Compute  Dominant  Cycle  Phase} 
SmoothPrice = (4*Price + 3*Price  [l] + 2*Price[2] + 

DCPeriod = IntPortion(SmoothPeriod + .5); 
RealPart = 0; 
ImagPart = 0; 
For  count = 0 To  DCPeriod - 1 begin 

3 6 0 /ArcTangent ( Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

Price[3]) / 10; 

RealPart = RealPart + Cosine(360 * count / 
DCPeriod) * (SmoothPrice  [count] 1 ; 

(continued) 

Figure 12.1. (Continued). 
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ImagPart = ImagPart + Sine(360 * count / 
DCPeriod) * (SmoothPrice  [count] ) ; 

End ; 
If  AbsValue(Rea1Part) SO then  DCPhase = 
Arctangent(1magPart / Realpart); 

If  AbsValue(Rea1Part) c= 0.001 then  DCPhase = 
90 * Sign(1magPart) ; 

DCPhase = DCPhase + 90; 

{Compensate  for  one  bar  lag  of  the  Weighted 

DCPhase = DCPhase + 360 / SmoothPeriod; 

If  ImagPart c 0 then  DCPhase = DCPhase + 180; 
If  DCPhase > 315  then  DCPhase = DCPhase - 360; 
{Compute  the  Sine  and  LeadSine  Indicators} 
DCSine = Sine  (DCPhase) ; 

LeadSine = Sine(DCPhase + 45) ; 

{Compute  Trendline  as  simple  average  over  the 
measured  dominant  cycle  period} 

ITrend = 0; 
For  count = 0 to  DCPeriod - 1 begin 
End ; 
If  DCPeriod > 0 then  ITrend = ITrend / DCPeriod; 
Trendline = (4*ITrend + 3*ITrend[l] + 2*ITrend[2] + 

If  CurrentBar c 12 then  Trendline = Price; 

{Assume  Trend  Mode} 
Trend = 1; 

{Measure  days  in  trend  from  last  crossing of the 

If  Sine(DCPhase1  Crosses  Over  Sine(DCPhase + 45) 

Moving  Average} 

ITrend = ITrend + Price  [count] ; 

ITrend[3]) / 10; 

Sinewave  Indicator  lines} 

or  Sine(DCPhase)  Crosses  Under  Sine(DCPhase + 
45)  Then  begin 

DaysInTrend = 0; 
Trend = 0; 

End ; 
(continued) 

Figure 12.1. (Continued). 



Designing a Profitable Trading  System 123 

DaysInTrend = DaysInTrend + 1; 
If  DaysInTrend c .5*SmoothPeriod  then  Trend = 0; 

{Cycle  Mode  if  delta  phase  is +/-  50% of  dominant 
cycle  change  of  phase} 

If  SmoothPeriod <> 0 and  (DCPhase - DCPhase[ll > 
.67*360/SmoothPeriod  and  DCPhase - DCPhase[ll 
1.5*360/SmoothPeriod)  then  Trend = 0; 

{Declare  a  Trend  Mode if the  SmoothPrice  is  more 

If  AbsValue((SmoothPrice - Trendline)/Trendline) >= 
than 1.5% from  the  Trendline} 

.015  then  Trend = 1; 

If  Trend = 1 then  begin 
If  Trend[ll = 0 then  begin 

If  MarketPosition = -1 and  Smooth 

If  MarketPosition = 1 and  SmoothPrice c 

Price >= Trendline  then  buy; 

Trendline  then  sell; 
End ; 
If  SmoothPrice  Crosses  Over  Trendline 

If  SmoothPrice  Crosses  Under  Trendline 
then  buy; 

then  sell; 
End ; 

If  Trend = 0 then  begin 
If  LeadSine  Crosses  Over  DCSine  then  buy; 
If  LeadSine  Crosses  Under  DCSine  then 
sell ; 

End ; 

End ; 

Figure 12.1. (Continued). 
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Figure  12.2.  Phenomenal! The $398 average  profit  per trade with 
a 40 percent success rate on only  $12,500 maximum drawdown 
is competitive with any commercially available  Treasury Bond 
trading system. About 80 percent of the profits  were  made on 
long side trades. 

I was curious as to how much of the action was contributed 
by the Trend  Mode  and  how much was contributed by the Cycle 
Mode. I therefore simply deleted the four lines of code that made 
the Cycle  Mode trades and ran the system again  on the same 
Treasury Bond data. The results of the Trend Mode-only trading 
are given in Figure 12.3. 

These results are simply awful! The average  profit  per trade 
dropped to negative territory before any rational allowance  for 

Total Net Profit 
Gross  Profit 
Total # of trades 

Number winning 
trades 

Largest winning 
trade 

Average winning 
trade 

Ratio avg win/ 
avg loss 

Max  consec. 
Winners 

Avg # bars in 
winners 

Max intraday 
drawdown 

Profit  Factor 

$92,875.00 
$201,031.25 

233 

95 

$15,468.75 

$2,116.12 

2.70 

5 

20 

($12,500.00) 

1.86 

Gross Loss ($108,156.25) 
Percent 40.77% 

Number losing 138 

Largest  losing ($1,156.25) 

Average  losing ($783.74) 

Avg trade $398.61 

Max  consec. 11 

Avg # bars in 5 

profitable 

trades 

trade 

trade 

(win & loss) 

losers 

losers 

Max # contracts 
held 

1 

J 

Figure 12.2. Original  SineTrend performance summary  on  Treasury Bonds- 
9 July 1984 to 16 June 2000. 
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Total Net Profit 
Gross Profit 
Total # of trades 
Number  winning 

trades 
Largest winning 

trade 
Average winning 

trade 
Ratio avg win/ 

avg loss 
Max  consec. 

Winners 
Avg # bars in 

winners 
Max intraday 

drawdown 
Profit  Factor 

$19,968.75 
$39,093.75 

81 
15 

$8,218.75 

$2,606.25 

2.91 

2 

38 

($23,343.75) 

0.66 

Gross Loss 
Percent profitable 
Number losing 

Largest  losing trade 

Average losing trade 

trades 

Avg trade 

Max  consec. losers 
(win & loss) 

Avg # bars in losers 

Max # contracts held 

($59,062.50) 
18.52% 

66 

($1’000.00) 

($894.89) 

$246.53 

12 

8 

1 

Figure 12.3. SineTrend trend only performance summary on Treasury Bonds- 
9 July 1984 to 16 June 2000. 

slippage  and commission! The first thing these results indicate 
i s  that  the system is being  carried by Cycle  Mode  trades.  At this 
point, it seems prudent to make a concession to real-world  real- 
ities and try to modify the Trend  Mode rules. One of the easiest 
things to do is change the computation of the Instantaneous 
Trendline. By increasing or  decreasing the Instantaneous Trend- 
line SMA length, the resulting Instantaneous Trendline will be 
either more reactive or will react slower. If we change the code 
by using a CycPart multiplier, the SMA length is still related to 
the period of the measured dominant cycle. The code  fragment 
for the Trendline calculation was  changed  as indicated in Figure 
12.4. After  changing the code, optimizing on a CycPart of 1.15, 
and increasing the money-management stop to $1,100, the 
results indicated in Figure 12.5 were  obtained. These changes 
and optimizations are not “curve fitting’’  because the testing 

l 
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{Compute Trendline as simple average over the 

ITrend = 0; 
IntPeriod = IntPortion (CycPart*SmoothPeriod + . 5 )  ; 
For  count = 0 to IntPeriod - 1 begin 
End ; 
If DCPeriod > 0 then ITrend = ITrend / IntPeriod; 
Trendline = (4"ITrend + 3*ITrend[l] + 2*ITrend[2] + 

If CurrentBar e 12 then Trendline = Price; 

measured dominant cycle period} 

ITrend = ITrend + Price [count] ; 

ITrend[3] ) / 10; 

Figure 12.4. Code fragment for optimizable  Instantaneous  Trendline  calculation. 

Total Net Profit 
Gross  Profit 
Total # of trades 
Number  winning 

trades 
Largest winning 

trade 
Average winning 

trade 
Ratio avg win/ 

avg loss 
Max  consec. 

winners 
Avg # bars in 

winners 
Max intraday 

drawdown 
Profit  Factor 

$113,525.00 
$205,000.00 

191 
85 

$16,062.50 

$2,411.76 

2.79 

5 

24 

($8,137.50) 

2.24 

Gross Loss 
Percent profitable 
Number losing 

trades 
Largest losing 

trade 
Average losing 

trade 
Avg trade 

(win & loss) 
Max  consec. 

losers 
Avg # bars in 

losers 

Max # 
contracts held 

($91,475.00) 
44.5% 

106 

($1,125.00) 

($862.97) 

$594.37 

8 

6 

1 

Figure 12.5. SineTrend performance summary on Treasury Bonds, modified 
CycPart = 1.15, money-management stop = $1,100-9 July 1984 to 16 June 2000. 
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covered  a  16-year  span  and the results carry  a substantial trade- 
to-parameter ratio. 

These results are  outstanding! The  net profit has been 
increased  by  22  percent  over the original  system. The increased 
net profit  and  reduced number of trades  have  produced  nearly  a 50 
percent  increase in the average  profit  per  trade.  Further, the max- 
imum drawdown  over the 15-year  period  was  reduced  by 35 per- 
cent. Incidentally,  going  back and checking  on the Trend Mode- 
only  performance  after the Instantaneous Trendline  was  opti- 
mized, I got the results shown in Figure  12.6. Now the Trend 
Mode has been  enhanced to carry its share of the load. The opti- 
mization resulted  from  a  minor  increase in the period to calculate 
the Instantaneous Trendline. 

Total Net Profit 
Gross  Profit 
Total # of trades 
Number winning 

Largest winning 
trade 

Average winning 
trade 

Ratio avg win/ 
avg loss 

Max  consec. 
Winners 

Avg # bars in 
winners 

Max intraday 
drawdown 

Profit  Factor 

$43,062.50 
$98,906.00 

67 
24 

$16,062.50 

$4,121.09 

3.17 

4 

52 

($10,956.25) 

1.77 

Gross Loss 
Percent profitable 
Number losing 

trades 
Largest losing 

trade 
Average  losing 

trade 
Avg trade 

Max  consec. 
losers 

Avg # bars in 
losers 

(win & loss) 

Max # contracts 
held 

($55,843.75) 

35.82% 
43 

($1,781.25) 

($1,298.69) 

$642.72 

6 

13 

1 

Figure 12.6. SineTrend performance summary  on  Treasury  Bonds  (Trend 
Mode-only), modified CycPart = 1.15, money-management stop = $1,500- 
9 July 1984 to 16 June 2000. 
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The continuous and sustained equity growth of this Sine- 
Trend Automatic System  over the 15-year  period indicates just 
how robust this system is. A major contribution to  its robust- 
ness is  the fact that  the underlying principles of the system were 
based  purely on theoretical considerations. Equity growth is 
shown in Figure  12.7. 

The obvious  question to ask  now is whether the SineTrend 
Automatic System  works with contracts other than Treasury 
Bonds.  Since the system is based  purely on theory, the answer is 
that it should  be  universal. There are  bound to be some  issues  for 
whch it trades better than others,  however. To test the premise 
that it can be  applied to other securities, I applied the modified 
SineTrend to the back-adjusted  Swiss  Franc futures contract over 
the period  from 13 February  1975 to 1 June 2000.  When the Cyc- 
Part input was  optimized  for  1.10  and the money-management 
stop was set at $2,200, I obtained the results shown in Figure  12.8. 

The results of the SineTrend Automatic Trading  System are 
more than respectable-they  are on par with the results obtained 
by most commercially  available  trading systems. The average 

Figure 12.7. Equity Curve. 
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Total Net Profit 
Gross Profit 
Total # of trades 
Number  winning 

trades 
Largest  winning 

trade 
Average winning 

trade 
Ratio avg win/ 

avg loss 
Max consec. 

winners 
Avg # bars in 

winners 
Max intraday 

drawdown 
Profit  Factor 

$139,212.50 
$366,575.00 

460 
234 

$12,712.50 

$1,566.56 

1.56 

9 

16 

($18,187.50) 

1.61 

Gross  Loss 
Percent  profitable 
Number  losing 

trades 
Largest  losing 

trade 
Average  losing 

trade 
Avg trade 

(win & loss) 
Max consec. 

losers 
Avg # bars in 

losers 

Max # contracts 
held 

($227,362.50) 
50.87% 

226 

($3,200.00) 

($1,006.03) 

$302.64 

8 

7 

1 

Figure 12.8. SineTrend  performance  summary  on  Deutschemark,  modified Cyc- 
Part=1.10,money-managementstop=$2,200-13Pebruary1975 to 1 June2000. 

profit  per  trade is $302. The probability of success is over 50 per- 
cent. The ratio of average win to average  loss is 1.5G:l. Joe 
Krutsinger  calls this  the “daddy-goes-to-town number,” meaning 
that every time daddy  goes to  town he brings home $1 S O  when 
he is a winner as opposed to giving  up $1 when he is a  loser. 

The SineTrend system, as presented, is just a  core  from 
which much more sophisticated and profitable systems can be 
spawned. The trading rules I  have  provided are extremely sim- 
ple. There is  an infinite number of ways these rules can  be 
enhanced. For example, we know the Sinewave  Indicator  crosses 
one-eighth of a  cycle  before the turning point. For longer  cycle 
periods,  we  could be entering and exiting the Cycle  Mode  trades 
too early. It would not be terribly difficult to add  a  lag  factor 
relating to  the measured  period  before entering Cycle  Mode 
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trades. There may  even  be better or more reactive ways to 
switch between the Trend  Mode  and the Cycle  Mode. A correct 
mode determination is bound to have a profound  effect  on the 
trading system because  deciding the mode is the primary deci- 
sion to be  made  before the rules are applied. It is my desire to 
turn you  loose  on making the system better. I look  forward to 
hearing of your  successes. 

Key Points to Remember 

The SineTrend Automatic Trading  System switches trading 
rules depending on the mode of the market. 
In the Trend  Mode,  trades are made on the basis of the 
SmoothPrice  crossing the Instantaneous Trendline. 
In the Cycle Mode, trades are  made on the basis of the cross- 
ing of the Sinewave Indicator lines. 
The  automatic trading system based on theoretical princi- 
ples  performs on par with commercially available systems 
right out of the box. 



The real danger i s  not that computers will begin to 
think like men, but that men w.11 

begin to think like computers. 

-SYDNEY J. HARRIS 

e purpose for invoking transform arithmetic is to apply a tool 
ward solving a differential equation problem by using simple 

t this tool, many of the problems we encou 
table. There are many kinds of trans~orms, 

example, Mellin and Legendre Transforms exist for working in 
c~lindrical and spherical coordinates. Hankel and Meijer Trans- 
forms exist for working with Bessel Functions. The list goes on 
and on. 

The data with which we deal in trading are sampled data. We 
e data once per bar regardless of the time frame 
ny price charts are displayed as daily data. The 

sampling basis is equally valid for other sampling periods, such 
as weekly, hourly, or even one-minute bars. A11 information 
scales to the sampling period. The correct transform tool to use 
for this data is the 2 Transform. We describe the 15 Transform in 
this chapter so that we can later assess the transfer character- 
istics of more complicated filters. It is instructive to review 
several other transf~rms so that we can relate our problem solu- 
tions to real-world situations, achieving greater insight into 
both the problem and its solution. Because most traders have 
had no previous exposure to this powerful tool, I explain trans- 
form arithmetic in the simplest possible manner and only in 
terms of how it applies to trading. 
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Laplace Transform 

The Laplace  Transform is used,  among other purposes, to solve 
for the  transient conditions in electrical circuits. As an illustra- 
tion, a simple electrical circuit  is shown in Figure 13.1. A tran- 
sient occurs after the switch is closed. We will show the solution 
for  how the voltage V changes as a function of time after the 
switch is closed.  From  physics  we know that  the current flowing 
through a capacitor is proportional to the size of the capacitor 
and the rate change of voltage  across it. The equation for current 
flow i s  

dV I = C -  
d t  

After the switch  is closed, current flows through the resistor, 
through the capacitor,  and is returned to  the battery that has a 
voltage E. From Ohm's Law, the voltage V is  the battery voltage 
less the current multiplied by the Resistance R. That is, 

dV 
dt V = E - I R = E - R C -  

We now have a differential equation to solve  for V as a function 
of time. Differential equations are pretty scary  stuff, so let  us 

- \  I "  I 

Figure 13.1. A simple electrical circuit for transient analysis 
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invoke the Laplace Transform by substituting the Laplace  Op- 
erator S for the calculus operator (dldt). Our equation now be- 
comes 

V =  E - RCSV 

"" 

RC - RC 
v E sv 

1 - 
V =  RC, E 

S+- 
RC 
I 

Amazing! We have solved the problem  for the voltage V using 
only simple algebra.  More  precise, V is a function of the Laplace 
Operator, and should be written as 

V(s1 = RC E 
S+- 

RC 

In general, the  output function Y(s)  is equal to  the  input function 
X ( s )  multiplied by the system transfer response H(s) .  In other 
words, the system transfer response is the X(s) /Y(s )  ratio. 

We really want the solution for  voltage  as a function of time. 
The way  we  do this  is  to compare the relationship between the 
Laplace  Transform  and the solution in  the  time domain. Trans- 
form pairs  for these solutions can be  found in many handbooks 
and textbooks on the subject. In this case,  we  find that  the trans- 
form pair is 

U (1 - e-"') S+a  
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By examining like terms, we immehately have the solution for 
voltage in  the  time domain as 

V( t )  = E( 1 - 

Thus, we have  solved a relatively complex  differential equation 
using the Laplace  Transform  and simple algebra. In the S Do- 
main, the output is the  input multiplied by the transfer response 
of the system. In other words, the transfer  response is the ratio 
of the  input  to the output. In this format, the transfer function 
can  describe filters independent of the input driving function. In 
our example, the input is  the constant battery voltage E. This 
input  is multiplied in  the S Domain (and in  the  time domain 
because it is  a  constant) by the transfer  response of the RC filter. 
We will see this form of equation again when we examine Z 
Transforms. 

Fourier Transform 

What  Laplace Transforms are for transient analysis, Fourier 
Transforms are  for steady-state analysis. Recalling that  the 
expression  for  complex  frequency is e'"t, when we take the 
derivative of the complex  frequency  we  get d(ei"')/dt = jo e'"t. So 
the Fourier Transform operator  for the rate of change is jo 
instead of S. The Fourier  and  Laplace  Transforms share many 
common characteristics. 

Fourier Transforms are the tools we use to describe relation- 
ships in  the  time domain and  frequency domain. For example, 
an impulse in  the frequency domain is  a definition of a pure 
monotonic cycle. This cycle is  a  sine wave in  the  time domain. 
Fourier Transforms have many applications for the solution of 
physical  problems. For example, the relationship between the 
pattern across a lens and the projected  image constitute  a 
Fourier  Transform  pair.  Similarly, the relationship between the 
aperture distribution of an antenna and the radiation pattern, 
somewhat analogous to  a flashlight beam, is  a Fourier Trans- 
form  pair. 



Transform  Arithmetic 135 

2 Transform 

Just as Laplace  and  Fourier Transforms are  powerful tools for 
continuous systems, Z Transforms  provide a corresponding 
powerful tool for discrete systems. There are significant paral- 
lels between Z Transforms and  Fourier  Transforms. The Z 
Transform can be multiplied by the transfer response of a sys- 
tem  to obtain a 2 Transform of the system output.  The sampled 
data output for a discrete system can be found by taking the 
inverse Z Transform.  Because this theory is so important  to dig- 
ital signal  processing, a brief review of Z Transform theory is in 
order. 

We begin  by  defining a sequence of samples of the form xo, xl, 
x2,  x3, and so on. We designate the sequence of values by {x(nT)], 
or because the sampling period T can be  considered unity, 
simply (x(n)}. The sequence may consist of a finite number of 
samples or can be infinite in extent. The Z Transform of the se- 
quence is given as 

Z{x(n)] = 2 x(n)z-. 
n = O  

since all values of x are 0 for n < 0. Suppose the sequence (x(n)) 
consists of an infinity of values as 

(x(n)) = (a, a2, a3, a4, . . . } = (a). 

where a 0. The Z Transform  for the sequence is 

X(z)  = 2 x(n)z-n = 1 (a).z-" = 2 (az-l). 
n=O n=O n = O  

Designating the common ratio as Y = m", the Z Transform is 
recognized  as the geometric progression 1, Y, r2, r3, r4,. . . . The 
sum of the terms of this progression is 

S=- 1 --I" 
1 --I 
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Since r is less than. unity and n approaches infinity, the  sum sim- 
plifies to S = l/( 1 - I). Substituting r = a+, we obtain 

1 X(2) = 
2 -- 

l--2' 2 - a  
- 

We can now find the Z Transform of a step  function where 
x(n) = 0 for n < 0 and x(n) = 1  for n 2 0. In this case, 

X(2) = 2 -=- 
00 

2 z -- 
n=O 2- 1 

One of the more interesting and useful properties of the Z 
Transform is the effect of a one sample delay on a function. Sup- 
pose a sequence i s  given  by 

the Z Transform of this sequence i s  

Now, suppose the sequence is delayed  by one sample time. The 
Z Transform of the output sequence then is given  by 

Y(2) = x(0)z-1 + x( 1)z-2 + x(2)z" + . . . 
Or  simply 

Y(2) = X(2)z-1 

That is, a one sample time delay is equivalent to multiplying the 
Z Transform by 2". An additional delay results in an additional 
factor of z", and so on. This can be seen in equation form  as 

xIn) + 
x(n - 1) + x(+-1 
x(n - 2) -+ x(2)z-2 
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For a transform to work, there must be an inversion. Since 
Z[x(n)} = X(z), then  the inverse operation is  written as Z-'[X(z)] = 
x(n). There are several  ways to obtain the inverse transform, but 
perhaps the easiest is suggested by the original definition of the 
Z Transform. The expansion of X(z)  into a  sum of inverse pow- 
ers of z will exhibit x(n) as coefficients of the expansion.  When 
X(z) is  a rational fraction, the expansion can be  made by long 
division. For example,  we can find the Inverse Z Transform  for 
the step function whose Z Transform  was 

X(z)  = - z 
z -  1 

Performing the long  division,  we obtain 

1 + z-' + z-2 + z3 + . . . 
z - 1  

1 
1 - z-' 

z-' 
2-1 - 2-2 

Z-2 
2-2 - 24 

z4 

z - l)z 

We have thus re-created the original step function with which 
we started. We can also create some common Z Transform pairs 
by inspection. For example,  we  know that 

Z[an} = - z - a  
z 

We can substitute e-kT = e-k for a (since e-k is  a number less than 
unity and the sampling period is unity) and obtain 

Z(e-h} = - 
z - e-k 

z 

We now have a transform pair  for an exponential function. 
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Another obvious transform pair exists for an impulse func- 
tion. The impulse function will have a value only during the 
first sample. Its Z Transform is therefore unity. It  follows that 
the impulse delayed  by q samples is z-4. 

Approximations  of Analog Transfer  Functions 

Occasionally, it is desirable to convert a known analog transfer 
function in  the S Domain into a digital transfer function. This  is 
most often done with  the transfer function of a low-pass  or  band- 
pass filter, such as a Butterworth or Chebyshev  type,  because of 
the wealth of development  and  experience with these filters. 
There are two ways to perform this conversion. We describe 
only the impulse invariant method because it directly relates 
the electrical circuit described  earlier in this chapter to an Expo- 
nential Moving  Average  (EMA). 

The impulse invariant method consists of finding the 
impulse response of the analog filter h(t) and setting t = nT. The 
Z Transform of the quantized impulse response is  taken so that 
H(z) = Z{h(nT)]. It is key to factor the analog transfer response 
and use a partial fraction expansion so that  the equation can be 
written in  the following  form: 

where pi represents the  ith pole (the point at which the denomi- 
nator goes to zero), Ai is the magnitude associated with  the ith 
pole,  and N is the number of poles. The impulse response is 
given  by the Inverse  Laplace  Transform, which has the following 
form: 

N 
h(t) = 1 AiePit 

i =  1 

Since  each  pole in  the S Domain gives rise to an exponential 
term  in  the  time domain, at the sample times we have 
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N 
h(nT) = c Aiepint 

i =  1 

We have derived the Z Transform of an exponential as 

Therefore, the Z Transform of the impulse response is 

Recalling that  the transfer response of the resistor-capacitor ana- 
log filter is given  by 

l 

H(s)  = RC 
1 S+- RC 

The transfer response has a single  pole located at S = -1/RC. We 
can immediately substitute  like  terms  to obtain the digital 
transfer  response to be 

z 

Simplifying,  by letting (1 - a) = the equation becomes 

H(z )  = AZ 
z - ( 1 - a )  

and the frequency  response of the digital filter transfer response 
is given  as 
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The critical,  or  cutoff,  frequency is  that point at which the ampli- 
tude of the two terms in the denominator are equal.  Since o = 
2n/P0, where Po is the period  corresponding to  the cutoff  fre- 
quency, the critical period is 

-2n: 
P O  

" -ln(l  -a) 

Po = -2n: 
In( 1 - a) 

This  is exactly the cutoff  period  we asserted for an EMA in 
Chapter 3. Alternatively, if we know the desired  cutoff  period, 
we can calculate the EMA a as 

Let us look at  the transfer response in greater depth. 

- A - 
1 - (1 - a)z" 

m- A 
X(z)  1 - (1 - a)z" 

- 

Y(2) - (1 - a)Y(z)z-' = Ax(z)  

Converting to the digital domain,  and noting that z" notates a 
one period  delay,  we  get 

y -  ( l  -a)y[l]  =Ax 
y=Ax+(l   -a)y[ l ]  

If we  have a step function input of unity amplitude, the output 
must also  reach unity when the number of periods is large. 
Therefore, A must equal a. We conclude that  the digital  equiva- 
lent of our resistor-capacitor is 
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y =  ax+ (1 - a)y[l] 

This is exactly the equation for an EMA. In other words, the 
EMA is  the equivalent of a RC low-pass filter in the physical 
world. 

Key Points to Remember 

Transform arithmetic is used to algebraically  solve  differen- 
tial equation or  difference equation problems that would  be 
intractable otherwise. 
In the Z Domain, the  output  is equal to  the product of the 
input and the transfer response. 
The transfer  response  describes the performance of filters 
independently from the input driving function. 
Laplace,  Fourier,  and Z Transforms are  related. 
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FINITE  IMPULSE 
RESPONSE  FILTERS 

There i s  nothing  permanent  except  change. 

“HERACLITUS 

A  Simple  Moving  Average (SMA) is one example of a Finite 
Impulse Response  (FIR)  filter.  Spoken, these filters are alterna- 
tively pronounced  “eff-eye-are”  or “fur” filters. FIR filters have 
no corollary in  the physical  world-they exist only  as  digital 
computations. Their  unique characteristic is  that  their  impulse 
response is exactly the same  as  their coefficients. An impulse as 
input digital data is simply unity for one sample and zero  for all 
other samples.  As this  impulse ages out, that is, as it is succes- 
sively  delayed, it excites  each element of the filter successively, 
sweeping out  the amplitude of the filter coefficients. Thus, the 
impulse response is the same as the filter coefficients. The gen- 
eral time response of a FIR filter is 

Or, more concisely 

N-l 
yn = C-hix[N - i] 

i = O  

Taking the Z Transform  gives us 

143 
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N -  1 

Y(z)  = 1 hiX(z)z" 
i = O  

so that  the transfer response is 

Note  that if the transfer response is expressed  as a rational 
fraction, the response of the FIR filter is  all zeros. That is, there 
is no denominator other than unity. From the fundamental theo- 
rem of algebra, the  Nth order polynomial describing the transfer 
response  can  be  factored into N terms, each  of which is a zero of 
the polynomial.  Moving  average filters are characterized  as  hav- 
ing all-zero responses. 

The lag of a FIR filter is equal to  the location along the filter 
where the  sum of the coefficients is equal to half the  sum of  co- 
efficients in  the entire filter. In mathematical form, this condi- 
tion is expressed  as 

Note  that the first coefficient, the one with zero lag, is not used. 
Perhaps an easier  way to picture the lag is to imagine the filter 
coefficients  describing the height of a geometrical shape. If you 
were to draw this shape on a piece of paper  and cut it out  with a 
pair of scissors, the lag  would be equal to  the center of gravity. 
That is, it would be equal to the balance point of the shape. FIR 
filters are usually symmetric about their center so that lag is 
exactly the center of the filter. 

Weighted  Moving  Averages  (WMA) are FIR filters that are 
not  symmetric about their center point. This gives them  the 
advantage of having  less  lag. The  output of a 4-bar WMA is 

y = (4x + 3x[1] + 2x[2] + x[3])/10 

so that  the coefficients are 4, 3, 2, and 1. Discarding the first 
coefficient,  we see that  the second  coefficient is equal to the 
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sum of all the coefficients (excluding the first). Therefore, a 4-bar 
WMA has a l-bar lag. As a second  example, the  output of a 7-bar 
WMA is 

y = (7x + 6x[1] + 5x[2] + 4x[3] + 3x[4] + 2x[5] + x[6])/28 

In this case, the coefficients are 7,  6, 5, 4, 3, 2, and 1. After  dis- 
carding the first zero-lag  coefficient, the  sum of the next two 
coefficients is equal to half the total sum. Therefore, a 7-bar 
WMA has a lag of 2 bars. 

A big  advantage of symmetrical FIR filters is that lag is con- 
stant regardless of the frequency of the signal being  applied to 
the input of the filter. This means that there is no time distor- 
tion due to  the filtering. The phase  lag will be linear. Suppose 
the  time lag is 4 bars. This means there is 180  degrees of phase 
lag to an 8-bar  cycle  period, 90 degrees of phase  lag to a 16-bar 
cycle  period,  and  only  45  degrees of phase lag to a 32-bar  cycle 
period. 

The phase lag that results from a WMA is nearly linear 
throughout the passband of the filter. One nice thing about the 
WMA is  that higher-frequency components at and  above the 
critical band-pass  frequency  are  delayed less than  the frequency 
components within the passband. This means that distortion 
tends to work in favor of the trader by delaying the higher- 
frequency  wiggles  less than  the lag of the smoothed output. 

The  truth  is  that many of the benefits of  FIR filters are 
unavailable to traders because the length of the filter must be 
relatively long to synthesize interesting passbands. As a result, 
the induced lag is prohibitive. However, we can perform some 
innovative tricks and put FIR filters to good use. For example, in 
Chapter 3 we showed  how an SMA length can be adjusted to 
notch  out undesired  frequency components. Figure 3.5 is re- 
peated here as  Figure  14.1 to demonstrate this effect. The SMA 
has a notch in its frequency  response  for those cycle components 
having an integer number of cycles  across the width of the filter. 

An SMA is a FIR filter that has uniform amplitude coeffi- 
cients. The transfer  response can be  viewed  as a rectangle over 
the finite duration of the filter. The Fourier  Transform of this 
rectangle is a S in (X) /X  distribution, which is exactly what is dis- 
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I" 

l 

Figure 14.1. Frequency response of a 12-bar SMA. 

played in Figure 14.1. The numerator of this  function goes to 
zero  each time X goes through a multiple of 180 degrees. If L is 
the length of the FIR filter and P is the period of the signal vari- 
able being  applied to it, the frequency  response of the SMA FIR 
filter in  rahan measure is 

P 

Note that  the Sin(X)/X distribution has lobes in  the response 
between the notches. Smoothing the time-domain response can 
lower these lobes. This means we must taper the coefficients of 
the FIR filter. When  we taper the coefficients of the filter, the 
end elements have a smaller contribution to  the filtering action 
than they do in  the uniform amplitude case. The result is that 
there is less filtering action for a given length FIR-tapered filter 
when compared to  the uniform amplitude coefficient  case of the 
SMA. We therefore have a trade-off between the degree of out- 
of-band filtering and the efficiency of filtering the passband. A 
number of amplitude tapers have been invented, each with a 
desired characteristic for out-of-band signal rejection. It is im- 
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Figure 14.2. Amplitude response of a three-element linearly tapered 
FIR filter. 

practical for traders to employ these tapers,  however,  because of 
the additional lag  induced by  passband  inefficiency.  Linear  coef- 
ficient tapers are adequate for most trading applications. 

It might be instructive  to examine the passband of several 
linearly tapered FIR filters. Starting with one of the shortest pos- 
sible, a three-element filter has a response of 

y = (x + 2x[ l] + x[2])/4 

The lag through this filter is just to  the center of the filter, which 
i s  1 bar. Its amplitude response is shown in Figure  14.2. The nor- 
malized  frequency  corresponds to a 2-bar  period. So this short 
filter is only useful for  canceling the 2-bar  cycle. 

The next longest  FIR-tapered filter has four elements. Its 
response is 

Y = (X + 2x[ l] + 2 ~ [ 2 ]  + ~ [ 3 ] ) / 6  

The lag through this filter is 1.5 bars to  the center of the filter. 
Its amplitude response is shown in Figure  14.3. The additional 
term has introduced a second null for a 3-bar  cycle at a normal- 
ized  frequency of 0.67. (The way to navigate between the nor- 
malized frequency and the cycle  period is  to divide the 
normalized frequency by 2 and then  invert.)  The cutoff  fre- 
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I 

Figure 14.3. Amplitude  response  of  a  four-element  linearly  tapered FIR 
filter. 

quency, the point at which the amplitude response is -3 dB, is at 
a normalized frequency of about 0.33.  This corresponds to a 6- 
bar  cycle. 

Continuing our sequence of successively  longer  tapered FIR 
filters, the response of a 5-bar filter is 

Y = (x + 2 x [  l]  + 3x[2] + 2x[4] + x[5])/9 

The lag of this filter-the distance to its center-is 2 bars. The 
amplitude of this 5-bar  tapered FIR filter is shown in Figure 14.4. 

t 
i 

Figure 14.4. Amplitude  response  of  a  five-element  linearly  tapered FIR 
filter. 
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We can see that something interesting has happened. The can- 
cellation of the 2-bar  cycle has been lost. Although it is difficult 
to see on the large amplitude scale, the cutoff frequency has 
been  reduced when compared to  that of the 4-bar filter, but  not 
by much. This filter does not seem to be of much use. 

By contrast, a six-element linearly tapered FIR filter has some 
very interesting characteristics. Its time-domain response is 

Y = (x + 2x[1] + 3x[2] + 3x[3] + 2x[4] + x[5])/12 

The lag through this filter is 2.5 bars to  the center of the filter. 
Its amplitude response is shown in Figure  14.5. Not only has the 
cancellation of the 2-bar  cycle  period returned, but also the  cut- 
off frequency has been  reduced to about 0.2, a 10-bar  cycle.  Fur- 
thermore, the 3-bar and 4-bar  cycles  have  been notched out by 
this filter. Attenuation between the notches is  not uniform, but 
is nonetheless substantial. This  is an excellent filter for  general- 
purpose use by traders. 

We can now continue with our filter sequence. In so doing, 
we would  find that we  would  prefer to have an even number of 
elements in our tapered FIR filter so that  the normalized unity 
frequency, a 2-bar  cycle, is always notched out. Longer  and  longer 
cycles constitute the passband  as the length of the filter is  in- 
creased, with  the cutoff  period  being about 1.5 times the length 

Figure 14.5. Amplitude response of a six-element linearly tapered FIR 
filter. 
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of the filter. Never  forget that  the lag of an N-length filter is 
(N - 1)/2. Lag is the most crucial parameter of filter performance 
for a trader. 

Key Points to Remember 
m 

m 

m 

m 

m 

m 

m 

m 

m 

A Simple  Moving  Average  (SMA) is a Finite Impulse Re- 
sponse  (FIR) filter with uniform amplitude filter coefficients. 
Symmetrical FIR filters have no time distortion and, there- 
fore,  have a linear phase  delay. 
The lag of a FIR filter is the center of gravity of the filter coef- 
ficients. 
A Weighted  Moving  Average  (WMA) has linear phase  delay 
across its passband. 
A WMA always has less  lag outside the passband than it has 
for  cycle components within the passband. 
A 4-bar WMA has a lag of 1 bar. 
A 7-bar WMA has a lag of 2 bars. 
A six-element symmetrically, linearly tapered FIR filter is 
one of trading’s most interesting and useful filters. 
The passband  period of a symmetrically, linearly tapered FIR 
filter is approximately  1.5 times the length of the filter. 



INFINITE  IMPULSE 
RESPONSE  FILTERS 

Everyone is  a child of his past. 

"EDNA G. ROSTOW 

An Exponential  Moving Average  (EMA) is one example of an 
Infinite Impulse Response  (IIR) filter. Spoken, these filters are 
almost always  pronounced  "eye-eye-are" filters. As the name 
implies, IIR filters ring out forever (in theory) after  being stimu- 
lated by an impulse excitation, just like a bell. These filters are 
the digital equivalent of filters that can,  and  have,  been  designed 
and constructed from  physical  world components. As we  show 
in Chapter 13, an EMA is one example of an IIR filter. The trans- 
fer  response of the EMA is shown to be 

H(z )  = a 
1 - (1 - a)z" 

As  opposed to the all-zero response of the FIR filter, the 
transfer response of the IIR filter is expressed  as a rational frac- 
tion. When  we examine the Z Transform  for the filtered output, 
we  can understand why this produces the infinite impulse 
response. For the EMA, this is 

151 
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Y(2) = H(z)X(z) 
- aX(2) - 

1 - ( 1 - a)z" 

When  we multiply both sides of this equation by the denomina- 
tor on the right side, we obtain 

Y(2) - (1 - a)Y(z)z" = aX(2) 
Y(2) = aX(2) + (1 - a)Y(z)z" 

This equation says that  the current output depends not only on 
the current input,  but also on the output one sample ago. That 
is, the calculation is recursive. This repeats for  each subsequent 
sample, so that  the current output always  depends on all previ- 
ous outputs. 

The IIR filters are generally patterned after specific  analog 
filter shapes such as Buttenvorth, Chebyshev, or Elliptic  designs. 
Scaling  and  accuracy considerations are much more important 
for  IIR filters than for FIR filters because the iterative calcula- 
tions compound rounding errors,  and good judgment must be 
used to  determine if a particular filter is practical given the 
number of bits available. We must give  special attention  to  limit 
cycles, which are low-level oscillations due to rounding  error in 
computation. As rounding errors are included in each recursion, 
the results can be cumulative. This kind of error  causes particu- 
lar trouble when using EasyLanguage  because Tradestation 
rounds floating point calculations to 4 bits. If an IIR filter blows 
up on you, the problem  may not be a bug in your  code, but may 
result from limit cycles. I f  this occurs,  you must m o w  the 
design. One thing you can do is compute the filter response in a 
Dynamic Linked  Library  (DLL) that has been  compiled at a 
higher level of precision, and call up that DLL from your Easy- 
Language  code. 

A pole is  a zero of the denominator polynomial of a filter 
transfer response. The EMA has a single pole in  its transfer 
response. More complex filters  use  a larger number of samples 
of previous outputs, and therefore have a higher-order polyno- 
mial in  the denominator of the transfer response. From the 
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fundamental  theorem of algebra, we know that  this polyno- 
mial can be factored into zeros of the polynomial. Since the 
polynomial is  in  the denominator of the transfer response, 
these factors are called the poles of the response. These are the 
values of 2-l at which the transfer response blows up  mathe- 
matically because the denominator is zero,  giving an  infinite 
result.  This  cannot happen in  the filters because 2-l is con- 
strained  to be in integer numbers and the poles never occur at 
integer numbers in stable  filters. Higher-order filters are called 
multipole  filters. In trading, we are limited  to just a few  poles to 
calculate IIR responses  because  each  pole  necessarily  brings 
additional lag. Without the lag consideration, we could theoret- 
ically continue to add an infinite number of poles to our filter 
design to create a stone-wall filter response at the critical period. 

Butterworth Filters 

There  is  a host of multipole filter designs  available. One of the 
more common multipole  filter responses is called a Butter- 
worth  filter. This  filter is maximally smooth at zero  frequency. 
That is, it has the highest number of derivatives that have a  null 
value at zero  frequency. The filtering advantage of using multi- 
pole Butterworth filters is shown in  the comparison in Figure 
15.1. All three filters have a cutoff  period at  a 20-bar  cycle. We 
clearly  get more filtering with each increase in  the number of 
poles. 

The low-frequency  lag of Butterworth filters can be  com- 
puted by the following equation: 

Lag = N * P I X z  

where N = number of poles in  the filter 
P = critical period of the filter 

The equations for a two-pole Butterworth filter in EasyLanguage 
notation are 
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Cycle Period 

Figure 15.1. Comparison of Butterworth filters that have a 20-bar cutoff 
period. 

Figure 15.2. Responses for one-, two-, and three-pole filters having a 
14-bar cutoff. Increasing the number of poles increases the lag for a com- 
mon cutoff period. 
Chart mated with Tra&Skztion2oOa @ by Omega Research, Inc. 
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a = ExpValue(-1.414*3.14159/P); 
b = ~ * Q * C O S  (1.414*180/P); 
~ = b * ~ [ 1 ] - ~ * ~ * ~ [ 2 ] + ( ( 1 - b + ~ * ~ ) / 4 ) * ( ~ + 2 * ~ [ 1 ] + ~ [ 2 ] ) ;  

where P = cutoff  period of the two-pole filter. The equations for 
a three-pole Butterworth filter in EasyLanguage notation are 

Q = ExpValue(-3.14159/P); 

c = a*u; 
b = ~ * Q * C O S  (1.738*180/P); 

y = ( b  + c)*y[l] - (c + b*c)*y[2] + c*c*y[3] 
+ ((1 - b + c)*(l  - c ) / ~ ) * ( x +  3 * ~ [ 1 ]   + 3 * ~ [ 2 ]  +~[3]);  

where P = cutoff  period of the three-pole filter. The  merits of the 
higher-order filters are shown in Figures  15.2  and  15.3.  Clearly, 
the higher-order filters offer  greater fidelity when the lag is held 
constant. 

.... 

.......... ..... 

M, 

.............................................. 

Figure 15.3. One- and three-pole filter responses when equalized for a 
2-bar lag.  The higher order filter has greater fidelity  when the lag is held 
constant. 
Chart mated with Tr&Skaation2000i@ by Omega Resmcb, Inc. 
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Butterworth  Filter  Tables 

It is often easier to use a lookup table to get filter coefficients 
than uniquely calculate the coefficients  each time they are used. 
In Tables  15.1 and 15.2, the notation is defined as follows: A[O] is 
used with  the  current price data, A[n] is used with  the price data 
[n] bars  ago,  A[2] is used with price data 2  bars  ago, and B[n] is 
used with the previously calculated filter output [n] bars  ago. 
These tables are sure to make it easier to use higher-order filters. 

Gaussian  and  Other Low-Lag Filters 

The first objective of using smoothers is to eliminate or  reduce 
the undesired  high-frequency components in the price data. 

Table 15.1. lbo-Pole Butterworth Filter Coefficients 

Period A[O]  AD1 m 1  BPI BPI 
2 0.285784 0.571568 0.285784 -0.131366 -0.011770 
4 0.203973 0.407946 0.203973 0.292597 -0.108489 
6 0.130825 0.261650 0.130825 0.704171 -0.227470 
8 0.088501 0.177002 0.088501 0.975372 -0.329377 

10  0.063284 0.126567 0.063284 1.158161 -0.411296 
12 0.047322 0.094643 0.047322 1.287652 -0.476938 
14  0.036654 0.073308 0.036654 1.383531 -0.530147 
16  0.029198 0.058397 0.029198 1.457120 -0.573914 
18 0.023793 0.047586 0.023793 1.515266 -0.610438 
20 0.019754 0.039507 0.019754 1.562309 -0.641324 
22 0.016658 0.033317 0.016658 1.601119 -0.667753 
24 0.014235 0.028470 0.014235 1.633667 -0.690607 

28  0.010739 0.021477 0.010739 1.685157 -0.728112 
30 0.009454 0.018908 0.009454 1.705862 -0.743678 
32 0.008386 0.016773 0.008386 1.724025 -0.757571 
34 0.007490 0.014980 0.007490 1.740086 -0.770045 
36 0.006729 0.013459 0.006729 1.754388 -0.781305 

40  0.005518  0.011037  0.005518  1.778753  -0.800827 

26  0.012303  0.024607  0.012303  1.661342  -0.710555 

38  0.006079  0.012158  0.006079  1.767204  -0.791520 
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Figure 15.4. Lag of a three-pole Butterworth filter with a 10-bar period 
cutoff. 

Therefore, these smoothers are called low-pass filters, and they 
all work by some form of averaging. Butterworth low-pass filters 
can do this job, but nothing comes  for  free. A higher  degree of fil- 
tering is necessarily  accompanied by a larger amount of  lag. We 
have  come to see that  this is a fact of life. 

The downfall of most trading indicators, lag  causes the fail- 
ure to react to price  changes in a timely manner. A better 
approach to filtering, therefore, is to minimize the lag  and  accept 
the resultant smoothing. The importance of lag  (group  delay is 
an engineer’s  way of saying lag, which distinguishes lag  from the 
phase  delay through the filter)  is demonstrated in Figure 15.4. 
This  illustrates the lag of a three-pole Butterworth filter that 
attenuates cycles shorter than 10 bars. 

The low-frequency  lag of a Butterworth filter can be esti- 
mated by the following equation, where N is the number of 
poles in  the filter and P is the longest cycle  period to pass 
through the filter: 
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Lag = N*P/.” 

The lag story gets worse  as the frequency components of the 
input waveform  get  closer to  the band  edge of the filter. The 
higher-frequency components within the passband of the filter 
are actually delayed more than  the lower-frequency  compo- 
nents. This is exactly the opposite of what a trader desires. We 
have to react more quickly to rapid  changes in  the market, and 
we therefore prefer a smoothing filter that has less lag with  the 
higher-frequency components. 

A Gaussian filter is one whose transfer response is described 
by the familiar Gaussian bell-shaped  curve. In the case of low- 
pass filters, only the upper  half of the curve describes the filter. 
The use of Gaussian filters is a move  toward achieving the dual 
goals of reducing  lag  and  reducing the lag of high-frequency  com- 
ponents relative to the lag of lower-frequency components. We 
can construct multipole Gaussian filters that provide a desired 
degree of smoothing. The group  delay of a three-pole Gaussian 
filter having a 0.1 cycle  per  day  passband is shown in Figure  15.5 
for  comparison to  the delay  produced  by a Butterworth filter. 

For an equivalent number of poles, the lag of a Gaussian filter 
is about half the lag of a Butterworth filter. More important, the 
higher-frequency components have  even  less  lag than the low- 
frequency  components.  With  Gaussian filters, the lag (as a func- 
tion of frequency)  goes in  the right  direction for traders-decreased 
lag.  However, a Gaussian filter has about half the smoothing 
effectiveness as an equivalently sized Butterworth filter. A four- 
pole  Gaussian filter has about the same smoothing performance 
as a two-pole Butterworth filter. Thus, performing the same 
amount of filtering, these two filters have  about the same low- 
frequency lag, but the Gaussian filter preserves the original  price 
function with greater  fidelity  because the higher-frequency  com- 
ponents within the passband  are not delayed  as much as those 
within the Butterworth filter.  Comparative filter responses of a 
two-pole Butterworth filter and a two-pole  Gaussian  filter,  each 
having a 10-bar  cycle  passband,  are shown in Figure 15.6. 

There is no magic to  the Gaussian filter. It can be defined 
simply as the multiple application of an Exponential  Moving 
Average (EMA). The transfer  response of an EMA is 
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H(z) = 
a 

1 - (1 - a)z" 

Applying the EMA N times gives us an N-pole Gaussian filter 
transfer  response  expressed by the following equation: 

At  zero  frequency, z" = 1 because the Z Transform of a function 
is just the function itself at zero  frequency.  Therefore, this low- 
pass filter gain is unity. Also, the denominator assumes the 
value of aN at zero  frequency. The cutoff  frequency of the filter 
is defined  as that point where the transfer response is down  by 
3 dB, or 0.707 in amplitude. If the transfer response is down  by 3 
dB, then  the denominator, the only term  that  is a function of 

! 

Figure 15.5. Lag of a three-pole Gaussian filter with a 10-bar period cutoff, 
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Figure 15.6 Comparison of two-pole  filters illustrates that  the Gaussian filter has 
much  less  lag  than  the  Butterworth  filter. The  Gaussian filter has less smoothing. 
Chart mated with TradeStation2000i @ by Omega  Research, Inc. 

frequency, must be  up  by 3 dB, or  1.414 in amplitude. When this 
occurs,  we obtain the following relationship: 

(1 - (1 - a)~")" = 1 .414aN 

where z" = e-'" and co = 27$? Crunching through the complex 
arithmetic, we arrive at  the solution for  alpha  as 

a = -p + SQR( p2 + 2p) 

where p = (1 - cos (a))/( 1.4142'N - 1). 

We can use this generalized solution for alpha to compute 
the coefficients  for any order Gaussian filter. And,  because z" is 
synonymous with a l-bar lag, we can easily use EasyLanguage 
code to form equations from the N-pole transfer response  for the 
output. 
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One pole: y = ax + (1 - a)y[ l] 
Two poles: y = a2x + 2( 1 - a)y[ l] - (1 - ~t)~y[2]  
Three poles: y = a3x + 3( 1 - a)y[ l] - 3( 1 - a)zy[2] + (1 - ~x)~y[3] 
Four  poles: y = a4x + 4( 1 - a)y[ l] - 6( 1 - c~)~y[2] 

+ 4( 1 - a)3y[3] - (1 - a)4y[4] 

Gaussian  Filter  Tables 

As we  have seen in terms of the  Butternorth filter, it is often 
easier to consult a  lookup table to get filter coefficients than it is 
to calculate the coefficients  each time they are  used. In Tables 
15.3-15.6, column A lists the price  data  coefficient  and column 
B lists  the previously  calculated filter output [n] bars ago. 

Table 15.3. One-Pole Gaussian Filter (EM) 
Period 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

N O 1  
0.828427 
0.73205 1 
0.618034 
0.526602 
0.455887 
0.400720 
0.356896 
0.321416 
0.292186 
0.267730 
0.246990 
0.229192 
0.213760 
0.200256 
0.188343 
0.177759 
0.168294 
0.159780 
0.152082 
0.145089 

BPI 
0.171573 
0.267949 
0.381966 
0.473398 
0.5441 13 
0.599280 
0.643104 
0.678584 
0.707814 
0.732270 
0.753010 
0.770808 
0.786240 
0.799744 
0.81  1657 
0.822241 
0.83  1706 
0.840220 
0.847918 
0.85491 1 
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Table 15.4. Two-Pole  Gaussian  Filter  Coefficients 

Period 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

At01 
0.834615 
0.722959 
0.578300 
0.457577 
0.36501 7 
0.295336 
0.242632 
0.202250 
0.170835 
0.146017 
0.126125 
0.109966 
0.096680 
0.085633 
0.076357 
0.068496 
0.061779 
0.055996 
0.050984 
0.046612 

BPI 
0.172854 
0.299460 
0.479080 
0.6471 12 
0.791668 
0.913103 
1.014847 
1.100556 
1.173357 
1.235757 
1.289719 
1.336777 
1.378133 
1.414738 
1.447346 
1.476567 
1.502894 
1 S26729 
1 S48408 
1 S68205 

B121 
-0.007470 

-0.057379 
-0.022419 

-0.104688 
-0.156684 
-0.208439 
-0.257479 
-0.302806 
-0.344192 

-0.415844 
-0.381774 

-0.446743 
-0.474813 
-0.500371 
-0.523703 
-0.545063 
-0.564672 
-0.582726 

-0.614817 
-0.599392 



164 Rocket Science for Traders 

Table 15.5. Three-Pole Gaussian Filter Coefficients 
Period 

2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

At01 
0.836701 
0.718670 
0.558792 
0.422292 
0.318295 
0.242068 
0.186612 
0.146016 
0.115940 
0.093340 
0.0761 11 
0.062791 
0.052354 
0.044075 
0.037432 
0.032045 
0.027635 
0.023991 
0.020956 
0.018409 

W 1  
0.173094 
0.312814 
0.529009 
0.749259 
0.951680 
1.130321 
1.285644 
1.42025 1 
1.537154 
1.639147 
1.728632 
1.807607 
1.877714 
1.940297 
1.996460 
2.0471 11 
2.093000 
2.134754 
2.172895 
2.207865 

BPI 
-0.009987 
-0.032617 
-0.093283 
-0.187130 
-0.301899 
-0.425875 
-0.550960 
-0.672371 
-0.787614 
-0.895601 
-0.996056 
-1.089148 
-1.175270 
-1.254918 
-1.328618 
-1.396887 
-1.460217 
-1.519058 
-1.573824 
-1.624889 

~ [31 
0.000192 
0.001 134 
0.005483 
0.015579 
0.031923 
0.053486 
0.078704 
0.106104 
0.134520 
0.163114 
0.191313 
0.218750 
0.245202 
0.270546 
0.294726 
0.3  1773 1 
0.339582 
0.3603 13 
0.379973 
0.398615 
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Table 15.6. Four-Pole  Gaussian  Filter  Coefficients 

Period A[O]  BD1 BPI ~ 3 1  BPI 
2 0.837747 0.173178 -0.011247 0.000325 0.000004 
4 0.716200 0.320247 -0.038459 0.002053 0.000041 
6 0.547128 0.559812 -0.117521 0.010965 0.000384 
8 0.400596 0.817734 -0.250758 0.034176 0.001747 

10  0.289459 1.066023 -0.426152 0.075715 0.005045 

14  0.153408 1.496649 -0.839984 0.209527 0.019599 
12 0.209659  1.293310  -0.627244  0.135204  0.010929 

16  0.113779 1.676861 -1.054449 0.294694 0.030885 
18  0.085632 1.836187 -1.264344 0.386929 0.044405 
20  0.065397 1.977213 -1.466015 0.483104 0.059700 
22 0.050648 2.102418 -1.657560 0.580814 0.076320 
24 0.039744 2.214012 -1.838193 0.678297 0.093860 
26  0.031571 2.313903 -2.007804 0.774311 0.111980 
28 0.025363 2.403709 -2.166681 0.868012 0.130403 
30 0.020589 2.484797 -2.315331 0.958854 0.148910 
32 0.016875 2.558316 -2.454368 1.046508 0.167331 
34 0.013953 2.625237 -2.584450 1.130799 0.185538 
36 0.011632 2.686378 -2.706235 1.211662 0.203436 
38  0.009770 2.742435 -2.820356 1.289107 0.220956 
40  0.008263 2.794000 -2.927413 1.363199 0.238049 
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Key Points to Remember 

An Exponential  Moving Average ( E M )  is an Infinite Impulse 
Response (IIR) filter, having  only one pole in  its response. 
Classical filter types, such as Buttenvorth, Chebyshev,  and 
Gaussian are IIR filters. 
Lag  of an IIR filter is nonlinear as a function of input fre- 
quency. 
Low-frequency  lag of a Buttenvorth filter is N*P/7c2. 
Gaussian filters have the least lag of all the multipole fil- 
ters. The low-frequency  lag is approximately half the low- 
frequency  lag of an equivalently sized Butterworth filter. 
Calculations involving IIR filters can  blow up due to  the 
cumulative effect of rounding errors in  the computation. 



REMOVING LAG 
Money  is a terrible master 
but an excellent  servant. 

"P.T. BARNUM 

In 1960, R.E. Kalman introduced the concept of optimum esti- 
mation. Since then, his technique has proven to be a powerful 
and practical tool. The approach it utilizes is particularly well- 
suited for optimizing the performance of modern terrestrial and 
space navigation systems. Many traders not directly involved in 
system analysis have heard about Kalman filtering and  have 
expressed interest in learning more about applying it to the mar- 
ket. Although attempts have  been  made to provide  simple, intu- 
itive explanations, none has been completely successful. Almost 
without exception, descriptions have  become mired in  the jar- 
gon and state-space notation of the cult. 

In spite of the obscure-looking mathematics (the most impen- 
etrable of which  can  be  found in Dr. Kalman's  original  paper), 
Kalman  filtering is a surprisingly  direct  and simple concept. In the 
spirit of pragmatism,  we will not deal with  the full-blown matrix 
equations that a thorough  explanation of Kalman  filtering  re- 
quires,  and  we will be  less than rigorous in  its application to trad- 
ing. Rigorous  application  requires  knowledge of the probability 
dntributions of the statistics. Nonetheless,  we  end with practical 
and  useful  results. We depart  from the classical  approach  by  work- 
ing backward  from  Exponential  Moving  Averages ( E m s ) .  With 
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this process,  we introduce a method to achieve a nearly  zero-lag 
moving  average.  From there, we develop an automatic trading  sys- 
tem based  on the zero-lag  principle. 

Suboptimal Filters 

Tracking filters use a linear model to estimate the position of a 
target. The classic  example is a gunner shooting at an enemy tar- 
get.  He estimates the angle of his gun  and shoots. The forward 
foot  soldiers  radio  back how much deviation there was from the 
target. The gunner computes the incremental change  required 
for his new gun  angle  from the deviation. An Alpha filter shows 
that  this model constitutes using the previous estimate plus a 
constant times the difference between the last real position and 
the last estimate. The equation for this filter is 

XA=X"[1]+a(Z-X"[1]) 

where X" = estimated next position 
2 = last real position 

This  is exactly the same as the EMA with which you are famil- 
iar. Let us rearrange the  terms so that  the EMA is written as 

EMA = a*Price + (1 - a)*EMA[l] 

As you  know, this EMA equation produces a lag in  the estimated 
price. We can  improve our estimate of position by  adding an esti- 
mate of the velocity to the last known position. The position 
equation then becomes 

where V" = velocity estimate 
K = gain factor 
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The velocity estimate is an EMA  of the rate of change of posi- 
tion, so that 

V" = V"[ l] + p( v - V"[ l]) 

This is the Beta part of an Alpha-Beta filter. An Alpha-Beta filter 
considers not only the change of position, but also the change of 
velocity. In trading terms, an Alpha-Beta filter not only consid- 
ers the price, but also the change of price (momentum). 

We can create a near-zero-lag filter for the special  case  where 
p = 1. In this case, the EMA can be written as 

ZEMA = a* (Price + K* (Price - Price[3])) + (1 - a) *ZEMA[ l] 

where ZEMA is the zero-lag EMA. I took the liberty of using the 
three-day momentum as the velocity estimate. Figure  16.1  shows 

Figure 16.1. ZeroLag moving average compared to standard EMA with a = 0.25. 
Chart created with Tradesttion2000i @ by Omega  Research, Inc. 
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an EMA using a = 0.25 compared to a ZEMA using the same 
alpha  and K = 0.5. This is not a bad  zero-lag  filter,  even if it is sub- 
optimal. It is suboptimal because it is not a true Kalman  filter. 

ZeroLag Trading System 

The concepts of the Instantaneous Trendline and the ZeroLag 
EMA are  very  powerful. To demonstrate just  how  profound these 
concepts  are, I designed an intraday trading system and  applied it 
to one of the more exciting and  challenging contracts that exist 
today-the S&P futures. An intruday  trade is defined  as any 
active trade that is traded  and then closed at  the end of the day. 
Figure 16.2 illustrates the back-tested results of the S&P futures 

Total Net Profit 
Gross  Profit 
Total # of trades 
Number  winning 

trades 
Largest winning 

trade 
Average winning 

trade 
Ratio avg win/ 

avg  loss 
Max  consec. 

Winners 
Avg # bars in 

winners 
Max intraday 

drawdown 
Profit  Factor 

$146,450.00 
$336,937.50 

283 
142 

$15,000.00 

$2,372.80 

1.76 

7 

7 

($17,650.00) 

l .77 

Gross Loss 

Percent profitable 
Number losing 

trades 
Largest  losing 

trade 
Average  losing 

trade 
Avg trade 

(win tk loss) 
Max  consec. 

losers 
Avg # bars in 

losers 

Max # contracts 
held 

1 

($190,487.50) 
50.18% 

141 

($1,512.50) 

($1,350.98) 

$51 7.49 

9 

4 

1 

Figure 16.2. ZeroLag performance  summary on SW intraday-l  January 
1997 to  7 June 2000. 
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market from 1 January 1997 to 7 June 2000. A $1,500  money- 
management stop was  used. The results included an average in- 
come  over $40,000 per  year  per contract at  an average  profit  per 
trade of $5 17, and slightly more than half of all trades  were  prof- 
itable! This system trades an average of 1.5 times a week. The 
new part of the code (after the Hilbert calculations, with which 
you are familiar) starts where I set yesterday’s  high  and  low, 
computed by sequentially capturing the highest high  and the 
lowest  low  today. The ZEMA is computed using a gain  factor of 
0.5. Now the trading rules come into play. 

Rule number one demands an outside day  for any trade to be 
taken. That is, either the highest high today must be  higher than 
yesterday’s high or the lowest low today must be  lower than yes- 
terday’s  low. Next, a new position is entered only on the second 
bar of the day. A new position is established by the condition 
that  the MarketPosition equals zero (Flat Position). Then, on the 
second  bar of the day, if the ZeroLag line  is above the Instanta- 
neous Trendline and the filter conditions are met, a long  posi- 
tion  is established. The filter conditions are as  follows: The open 
of the second  bar must be  greater than  the open of the first; the 
high of the second  bar must be  higher than  the high of the first; 
and the close of the first bar must be in the upper two-thirds of 
its range. A similar rule exists for the short side trade. That is, 
the open of the second  bar must be less than  the open of the first; 
the low of the second  bar must be  lower than the low of the first; 
and the close of the first bar must be in the lower two-thirds of 
its range. Also, a crossover rule exists for all bars. If you find that 
the following set of conditions is met, then buy: The ZeroLag 
crosses  over the Instantaneous Trendline, the high of the current 
bar is less than  the high of the previous  one,  and the close of the 
current bar is in the upper half of the range of the bar. If this  set 
of conditions is  met,  then sell: The ZeroLag  crosses under the 
Instantaneous Trendline, the low of the current bar is greater 
than  the low of the previous  one,  and the close of the current bar 
is in  the lower half of the range of the bar. 

The complete code to achieve this performance is given in 
Figure  16.3. There is  not a lot of new code. The majority of the 
code is used to compute the Instantaneous Trendline. We use an 
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Inputs : Price ( (H+L)  /2) , 
alpha ( .33) ; 

Vars:  Smooth(O), 
Detrender (0) , 

SmoothPeriod (0 1 , 
SmoothPrice (0 , 
DCPeriod (0) , 
RealPart (0) , 
ImagPart (0) , 
count (0) , 
ITrend ( 0 1 , 
Trendline (0) , 
ZeroLag ( 0 1 , 
Ht (0) , 
Lt (01 ,  
Yh(O), 
Yl(0) ; 

{Initialize  ZeroLag} 
If  CurrentBar = 5 then  begin 

End ; 
ZeroLag = (H+L)  /2; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price[ll + 2*Price[2] + 
Price[3]) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
.5769*Smooth[4] - .0962*Smooth L611 * ( .075* 
Period[l] + .54) ; 

(continued) 

Figure 16.3. ZeroLag Intraday  Trading System  EasyLanguage code. 
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{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender t21 - 

.5769*Detrender  [4] - .0962*Detrender [6l ) * 
( .075*Period  [l] + .54) ; 

I1 = Detrender[3] ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
jI = (.0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = ( .0962*Q1 + .5769*Q1[2] - .5769*Q1 t41 - 
.0962*11[6] ) * ( .075*Period  [l] + .S41 ; 

.0962*Q1[6] ) * ( .  075*Period[l] + .54) ; 

{Phasor  addition  for  3  bar  averaging) } 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2  [l] ; 

the  discriminator} 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re[l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im c >  0 and  Re c>  0 then  Period = 
3  6  O/ArcTangent ( Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

If  Period > 1.5*Period[l]  then  Period = 

If  Period c .67*Period[l]  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + . 8*Period[l] ; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

{Compute  Trendline as simple  average  over  the 

DCPeriod = IntPortion(SmoothPeriod + - 5 ) ;  
measured  dominant  cycle  period} 

(continued) 

Figure 16.3. (Continued). 
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ITrend = 0; 
For  count = 0 to  DCPeriod - 1 begin 

End ; 
If  DCPeriod > 0 then  ITrend = ITrend / DCPeriod; 
Trendline = (4*ITrend + 3*ITrend[ll + 2* 

If CurrentBar c 12 then  Trendline = Price; 

ITrend = ITrend + Price  [count] ; 

ITrend[2] + ITrendL31) / 10; 

{Set  yesterday's  high  and  low 
If  Date c >  Date[ll  then  begin 

Ht = High; 
Lt = Low; 
Yh = Ht  [l] ; 
Y1 = Lt  [l] ; 

End ; 

{Establish  today's  high  and  low} 
If  High  Ht  then  Ht = High; 
If  Low c Lt  then  Lt = Low; 

{Compute  zero  lag  filter} 
ZeroLag = alpha*(Price + .5*(Price - Price[31)) + 

(1 - alpha)  *ZeroLag  [l] ; 

{Demand  an  outside  day  to  trade} 
If  Date >= 0 and  (Ht >= Yh or  Lt C= Y1) then 
begin 

{New  positions  are  entered  at  the  end  of 

If  Date = Date[ll  and  Date > Date[2]  and 
the  second  bar of the  day} 

MarketPosition = 0 then  begin 
If  ZeroLag > Trendline  and  Open > 
Open  [l]  and  High > High [ 11 and 
Close 111 > Low 111 + (High[l] - 
Low[ll) / 3 then  buy; 

If  ZeroLag c Trendline  and  Open C 

Open  [l]  and  Low c Low  [l]  and 
Close  [l] c High[l] - (High[l] - 
Low[ll) / 3 then  sell; 

End ; 
(continued) 

Figure 16.3. (Continued). 
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If ZerOLag Crosses Over Trendline and High 
c High[l] and  Close > Low + (High - 
Low) /2 then buy; 

> Low[l]  and  Close > High - (High - 
Low)/2  then sell; 

If ZeroLag Crosses Under Trendline and LOW 

End ; 
End : 

Figure 16.3. (Continued). 

additional input-the alpha used in  the ZeroLag  EMA. In this 
case, I assigned a value of 0.33 to alpha,  corresponding to a 2-bar 
lag if the EMA  lag was not removed. 

Key Points to Remember 

Exponential  Moving Average (EMA) lag can be  removed by 
adding a short-term  momentum factor times a gain term  to 
the current price in  the EMA equation. 
A ZeroLag  EMA is similar to a Kalman filter with a constant 
gain. 
The theoretical Instantaneous Trendline and ZeroLag  Indica- 
tors are  powerful tools even  for  demanding intraday trading. 
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l”A-THE MOTHER OF 
ADAPTIVE  MOVING  AVERAGES 

Think  like a man of action, 
act like a man of thought. 

-HEW-LOUIS BERGSON 

We have  already encountered one method to make Finite Im- 
pulse Response  (FIR) filters adaptive-setting the cutoff  fre- 
quency to be some multiplier times the measured  cycle  period. 
In certain special  cases, the length of the Simple  Moving  Aver- 
age (SMA) is set  not only to smooth, but also to specifically 
notch out, some undesired frequency components. The Instan- 
taneous Trendline is one such example. We can produce a much 
faster response to changes if we introduce nonlinearity into an 
Infinite Impulse Response (IIR) filter calculation. Nonlinearities 
usually depend on price volatility. We briefly  describe  several of 
these approaches  before  applying the Hilbert Transform  for a 
unique approach. 

Kauhan’s Adaptive Moving Average 
Kaufman’s Adaptive  Moving Average ( K A M A )  is based on the 
concept that a noisy market requires a slower trend than one 
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with less  noise.' The basic principle is  that  the trendline must 
lag further behind the price in a relatively noisy market to avoid 
being penetrated by the price. The moving  average can speed up 
when the prices  move consistently in one direction. According 
to Perry  Kaufman, who invented the system, KAMA is intended 
to use the fastest trend possible,  based on the smallest calcula- 
tion period  for the existing market conditions. It does this by 
changing the alpha of the EMA with each  new sample. The 
equation for KAMA i s  

KAMA = S*Price + (1 - S)*KAMA[l] 

where S = smoothing factor. This is exactly the same equation 
that we use for the Exponential  Moving Average ( E M )  except 
the variable S replaces the alpha constant of the EMA. 

The equation for the smoothing factor involves two bound- 
aries  and an efficiency ratio. 

S = (E*(fastest - slowest) + slowestj2 

Fastest refers to  the alpha of the  shortest period  boundary.  Slow- 
est refers to  the alpha of the longest period  boundary. The sug- 
gested  period  boundaries are 2 and 30 bars. In this case, the two 
alphas are calculated to be 

Fastest = 2/(2 + 1) = 0.6667 
Slowest = 2/(30 + 1) = 0.0645 

Simpllfying the equation for the smoothing factor, we get 

S = (0.6022*E + 0.0645)' 

The efficiency ratio (E) is  the absolute value of the difference 
of price  across the calculation span divided  by the  sum of the 

'Kaufman, Perry J. Zhding Systems and Methods. 3rd ed. New York 
John Wiley & Sons, 1998. 
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absolute value of the individual price  differences  across the cal- 
culation span. The equation for E is 

[Price - Price[N]( 
E =  

The default value for N is 10.  However, testing to find the best 
length is suggested. 

Variable Index Dynamic Average 

Variable  Index Dynamic Average  (VIDYA) uses a pivotal smooth- 
ing constant that  is fixed.2 The suggested value of this constant 
is 0.2, corresponding to  the alpha of a nine-day EMA. The equa- 
tion for VIDYA is 

VIDYA = 0.2*k*Close + (1 - 0.2*k)*VIDYA[l] 

Again, this  is exactly the same equation as an EMA except the 
relative volatility term k has been included to introduce the 
nonlinearity. The volatility  term is the ratio of the standard 
deviation of Closes  over the last n days to  the standard deviation 
of Closes  over the last m days, where m is greater than n. Sug- 
gested  values  are n = 9 and m = 30. 

MESA Adaptive  Moving  Average-a..k.a “A 

Forgive the whimsy of the name I attached to  this unique indi- 
cator, but  with  that name I’m sure you will always  remember it. 
Like KAMA and VIDYA, the starting point for “A is a con- 

2Chande, lbshar S., and Stanley Kroll. The New Technical Trader. New 
York: John Wiley & Sons, 1994. 
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ventional Exponential  Moving Average (EMA). The equation for 
an EMA is  written as 

EMA = a*Price + (1 - a)*EMA[l] 

where a is less than 1. In English, this equation says that  the 
EMA is comprised of taking a fraction of the current price  and 
adding one minus that fraction times the previous value of the 
EMA. The larger the value of a, the more  responsive the EMA 
becomes to  the current price.  Conversely, if a becomes smaller, 
the EMA is more dependent on previous  values of the average 
rather than the current price.  Therefore, a way to make an EMA 
adaptive is to vary the value of a according to some independent 
parameter. 

The concept of MAMA is to relate the phase rate of change 
to  the EMA alpha, thus making the EMA adaptive. The cycle 
phase  goes  from 0 through 360 degrees in each  cycle. The phase 
is continuous, but  is usually drawn with  the snap back to 0 
degrees  as the beginning of each  cycle. Thus the phase rate of 
change is 360  degrees  per  cycle. The shorter the cycle, the faster 
the phase rate of change.  For  example, a 36-bar  cycle has a phase 
rate of change of 10  degrees  per  bar, while a 10-bar  cycle has a 
rate of change of 36 degrees  per  bar. The cycle  periods tend to be 
longer when the market is in a Trend  Mode. 

The cycle  phase is computed from the arctangent of the ratio 
of the Quadrature component to the Inphase component. I 
obtain the phase rate of change  values by taking the difference of 
successive  phase measurements. The arctangent function only 
measures phase  over a half  cycle,  from -90 degrees to +90 de- 
grees.  Since the phase measurement snaps back  every  half  cycle, 
a huge  negative rate change of phase  every half cycle results 
from the computation of the rate change of phase.  Measured 
negative rate changes of phase  can  also  occur when the market 
is  in a Trend  Mode.  Any  negative rate change of phase is theo- 
retically impossible because  phase must advance  as time  in- 
creases. We therefore limit  all rate change of phase to be  no less 
than unity. 

The alpha in MAMA is allowed to range between a maxi- 
mum and minimum value, these values  being established as 
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inputs.  The suggested maximum value is FastLimit = 0.5, and 
the suggested minimum  is SlowLimit = 0.05. The variable  alpha 
is computed as the FastLimit  divided by the phase rate of 
change.  Any time there is a negative  phase rate of change, the 
value of alpha is set to the FastLimit. If the phase rate of change 
is large, the variable alpha is bounded at  the SlowLimit. 

The arctangent function produces a phase  response between 
-90 degrees  and +90 degrees, with a phase  wrap  back to -90 
degrees. There is a huge  negative rate change of phase  across this 
phase wrap  boundary. By limiting  this negative rate change of 
phase to +l, the alpha used in  the EMA is  set to the FastLimit. 
The phase  wrap  boundary  occurs at 0 degrees  and 180 degrees of 
a theoretical sine wave due to  the 90-degree  lag of the Hilbert 
Transform. 

The variable alpha is guaranteed to be set  to the FastLimit 
every  half  cycle due to  the measured phase snap  back. This rela- 
tively large value of alpha  causes "A to rapidly  approach the 
price. After the phase snaps back, the alpha returns  to a typically 
small value. The  small value of alpha causes MAMA to hold 
nearly the value it achieved when alpha was at  the FastLimit. 
This switching between the relatively large  and relatively small 
values of alpha  produce the ratcheting action that you  observe in 
the waveform. The ratcheting occurs less often when the mar- 
ket  is in  the Trend  Mode  because the cycle  period is longer in 
these cases. 

An interesting set of indicators result if the "A is 
applied to the first MAMA line  to produce a Following  Adaptive 
Moving  Average  (FAMA). By using an alpha in FAMA that  is half 
the value of the alpha in MAMA, the FAMA has steps in  time 
synchronization with " A ,  but the vertical movement is 
not as great. As a result, MAMA and FAMA do not cross unless 
there has been a major  change in market direction. This suggests 
an adaptive moving  average  crossover system that is virtually 
free of whipsaw  trades. 

The "A code is shown in Figure 17.1. This code is nearly 
the same as the one that computes the Hilbert Transform 
Homodyne Discriminator cycle measurement (see Chapter 7, 
Figure 7.2), with  the additional code to compute phase rate of 
change, the nonlinear alpha, and the MAMA and FAMA lines. 
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Inputs : Price ( (H+L) /2) , 
FastLimit ( .5) , 
SlowLimit ( .  05) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 )  , 
I1 (01 ,  
Q1 (01,  
jI ( 0 )  , 
jQ(O), 
12 (01,  
Q2 (01,  
Re (01 ,  
Im(O), 
Period ( 0 )  , 
Smoothperiod ( 0  ) , 
Phase ( 0 )  , 
DeltaPhase ( 0 )  , 
alpha ( 0 )  , 
" A ( 0 )  ; 
F W ( 0 )  ; 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price[ll + Z*Price  [2] + 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
Price[3]) / 10; 

.5769*Smooth  [41 - .0962*Smooth  [61) * 
( .075*Period  [l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender [21 - 

.5769*Detrender  [4] - .0962*Detrender 161 ) * 
( .  075*Period  [l] + ,541 ; 

I1 = Detrender  [3] ; 

{Advance  the  phase of I1  and  Q1  by  90  degrees} 
jI = ( .  0962*11 + .5769*11[21 - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1  [2] - .5769*Q1[4] - 
.0962*11[6] ) * ( .  075*Period  [l] + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 
(continued) 

Figure 17.1. "A EasyLanguage code. 
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{Phasor  addition  for  3  bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2[1] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12 [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im <> 0 and  Re c>  0 
360/ArcTangent(Im/Re 

If  Period > 1.5*Period 
1.5*Period  [l] ; 

then  Period = 
1 ;  
[l]  then  Period = 

If  Period  .67*Period[l]  then  Period = 

If Period c 6 then  Period = 6;  
If  Period > 50  then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 
If  I1 C >  0 then  Phase = (ArcTangent  (Q1 / 11) ) ; 
Deltaphase = Phase[ll - Phase; 
If  Deltaphase < 1 then  Deltaphase = 1; 
alpha = Speed / Deltaphase; 
If  alpha c SlowLimit  then  alpha = SlowLimit; 
MAMA = alpha*Price + (1 - alpha)  *MAMA[l] ; 
FAMA = .5*alpha*MAMA + (1 - .5*alpha)  *FAMA[l] ; 

.67*Period  [l] ; 

Plot1 (MAMA, "MAMA") ; 
Plot2  (FAMA, "FAMA'') ; 

End ; 

Figure 17.1. (Continued). 
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Figure 17.2. "A rapidly ratchets to follow price, 
Chart  created with TradeStation2OOOi@ by Omega Research, Inc. 

The unique character of MAMA is shown in Figure 17.2. The 
thicker MAMA line ratchets closely behind the price. The  thin 
FAMA line steps in time sequence with " A ,  but the move- 
ment is not as dramatic because its alpha is  at half  value.  From 
Figure 17.2 it is clear that  the two  adaptive  moving  average lines 
only  cross at major market reversals. Their action enables the cre- 
ation of a trading system that is virtually free of whipsaw  trades. 

Key Points to Remember 

Most adaptive moving  averages use momentum as the basis 
of the nonlinearity of alpha in an Exponential  Moving  Aver- 
age (EMA). 
Mesa  Adaptive  Moving  Average ( M A M A )  uses the Hilbert 
Transform phase rate of change to produce a ratcheting 
action of the adaptive moving  average. 
MAMA is ideal as the basis of a trading system to  minimize 
whipsaws. 



Chapter 18 

EHLERS  FILTERS 
To affinity-and beyond! 

"Buzz LIGHTYEAR (PARAPHRASED) 

The most common filters used  by traders are  moving averages- 
either Simple  Moving  Averages (SMA) or  Exponential  Moving 
Averages (EMA). These are linear filters. Linear filters are opti- 
mal for smoothing stationary, slowly  varying  signals that are 
corrupted with high-frequency  noise. Unfortunately, price  data 
are not stationary much of the time. A coin flip experiment is an 
example of a statistical stationary process.  However, if weighted 
coins  are introduced into  the experiment randomly, the statis- 
tics of the experiment now  depend on which coin is used,  and 
therefore are nonstationary. The signals  we  deal with can often 
be  described statistically. For example, human speech has noise- 
like  statistics.  The process is nonstationary because it changes 
from moment to moment. Although speech has noiselike char- 
acteristics, that is not  to say that it does not carry information. 
Price data resembles  speech in statistical characteristics. The 
data are both noiselike and nonstationary. One of the main prob- 
lems we encounter in trading when using technical analysis is 
that we must  attempt  to restore signals that are often nonsta- 
tionary and are also corrupted by  noise.  When  dealing with non- 
stationary signals that have sharp transitions of their mean or 
when dealing with impulsive noise, linear filtering techniques 
give  poor results. In this chapter, I describe  how to make some 
amazing nonlinear filters that better handle these signals. 

185 
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The filters I have invented are nonlinear FIR filters. It turns 
out that they provide both extraordinary smoothing in sideways 
markets and  aggressively  follow  major  price movements with 
minimal lag. The development of my filters starts  with a general 
class of  FIR filters called  Order Statistic (OS) filters. These filters 
are well-known for  speech  and  image  processing,’ to sharpen 
edges, increase contrast, and  for robust estimation. In contrast to 
linear filters, where temporal ordering of the samples is pre- 
served, OS filters base their operation on the ranking of samples 
within the filter window. The data are ranked by their summary 
statistics, such as their mean or  variance, rather than by their 
temporal position. 

Among OS filters, the Median filter is the best known. In a 
Median filter, the  output is the median value of all the data val- 
ues within the observation window. As opposed to an averaging 
filter, the Median filter simply discards all data except the 
median value. In this way, impulsive noise spikes and extreme 
price data are eliminated rather than included in the average. 
The median value can  fall at the first sample in  the data window, 
at  the last sample, or anywhere in between. Thus, temporal 
characteristics are lost. The Median filter tends to smooth out 
short-term variations that lead to whipsaw trades with linear fil- 
ters. However, the lag of a Median filter in response to a sharp 
and sustained price movement is substantial-it  necessarily is 
about half the filter window width. The response of a Median fil- 
ter that has a 10-bar  window width is shown in Figure 18. l. Note 
that  the filter did not respond to small price movements in 
October/November or in January/February, which possibly 
could  have eliminated several potential whipsaw  trades that 
would  have  been  produced by linear filters. Finding the median 
is a simple sorting problem,  and,  conveniently, Tradestation 
contains a median function. Therefore, I will  not provide  code 
for a Median filter. Median filters can be smoothed with an EMA 
to make them more presentable and  easier to read. 

’Pitas, Ioannis, and Anastasios N. Venetsanopoulos. “Order  Statistics 
in Digital Image Processing,” Proceedings of the IEEE Sol12 (1992): 
1893-1921. 
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Figure 18.1. Response of a 10-bar Median  filter. 
Chart created with TradeStation2OOOi@ by Omega Research, Inc. 

Like OS filters,  Ehlers filters are  robust.  Additionally, they 
exploit both the rank-order  and  temporal  characteristics of the 
data. That is, the Ehlers filter maintains the temporal  affinity 
between its coefficients  and the statistic in use. The generalized 
Ehlers filter can  be  oriented to any statistic of your  choice,  making 
it extremely  easy to calculate. The most obvious statistic  to use is 
price momentum because these data  enable the nonlinear  Ehlers 
filter to rapidly  follow  price  changes (as they enable the KAMA IIR 
filter to do the same). The range of statistic used is virtually limit- 
less. For example, the Elders filter could  be nonlinear with respect 
to acceleration (the rate change of momentum), Signal-to-Noise 
Ratio,  volume,  money flow (delta price times volume), and so on. 
Even other indicators, such as  Stochastic or Relative  Strength 
Indicators  (RSIs)  can  be  used  as a statistic. This will become  more 
apparent  after  we  explain the calculating  procedure. 

The Ehlers filter has a formulation similar to  that of the FIR 
filter. If y is  the filter output and xi is  the  ith input across a filter 
window width n, then  the equation is 
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y = ClXl+ c2x2 + c3x3 + c4x4 + . . . + c,x, 
The c’s are the coefficients that contain the  statistic in which 
you are interested. For example, if you are interested in  the 5-bar 
momentum, each  coefficient  would be, in EasyLanguage nota- 
tion, 

Price[count] - Price[count + 51 

In this way, the coefficients are ordered  according to their size 
within the window. For example, c3 could  possibly  have the 
largest momentum and cl could  be the next largest momentum, 
and their temporal locations within the filter is retained. Unity 
gain of the filter must be retained. This naturally occurs by nor- 
malizing each of the filter coefficients by their  sum so the signal 
output of the filter is expressed  as an affine  polynomial. So, the 
complete formal description of the Ehlers filter is 

The  statistic used in  the Ehlers filters should be detrended 
for maximum effectiveness. If we  do not detrend the statistic, 
each of the coefficients will have a large common term relative 
to any  differences there may  be between them. If the coefficients 
have a large common term, the Ehlers filter behaves almost 
identical to an SMA. 

The EasyLanguage  code  for the Ehlers filter is given in Figure 
18.2 for the particular example of a 5-bar momentum. 

The example filter has 15 coefficients, although the array of 
coefficients is dimensioned to 25 to allow experimentation 
using a longer filter. (If a filter longer than 25 samples is desired, 
the dimension of the Array must be  increased  accordingly.) In 
the first calculation, we find each  coefficient in  the filter as the 
5-bar momentum.  The next computation sums  the numerator 
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Inputs:  Price ( (H+L) / 2 )  , 
Length (15) ; 

Vars:  count (01 ,  
SumCoef ( 0 )  , 
Num(O), 
Filt ( 0 )  ; 

Array:  Coef L251 ( 0 )  ; 

{Coefficients  can  be  computed  using  any  statistic  of 
choice - - - - - - - - -  a 5 bar  momentum  is  used  as  an 
example} 

For  count = 0 to  Length - 1 begin 

Price  [Count + 51 ; 

Coef  [count] = Absvalue  (Price  [count] - 

end ; 

{Sum  across  the  numerator  and  across  all  coefficients} 
Nurn = 0; 
SumCoef = O ;  
For  count = 0 to  Length -1 begin 

Num = Num + Coef  [count]  *Price  [count] ; 

Sumcoef = Sumcoef + Coef  [count] ; 

end ; 
Filt = Num / SumCoef; 

Plot1  (Filt,  "Ehlers") ; 

Figure 18.2. EasyLanguage code to compute Ehlers filters. 

as the product of each  coefficient and the price at  the corre- 
sponding  sample, and sums the coefficients alone. Finally, the 
filter is completed by taking the ratio of the numerator to  the 
coefficient sum.  The performance of this filter is shown in Fig- 
ure 18.3. 

Figure  18.3 illustrates how the momentum-derived Ehlers 
filter clearly  responds quickly to rapid  price movements while 
rejecting minor price movements to a greater  degree. This kind 
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Figure 18.3. Performance of a 15-bar Ehlers  filter  using  a 5-bar momentum 
compared to the performance of a 15-bar SMA. 
Chart m t e d  with Trade tu t im20~@ by Omega  Research, Inc. 

of filter can be  used to quickly respond to changes in trend direc- 
tion  without producing the whipsaws that are so prevalent when 
linear filters are employed. The Ehlers filter can  be  rendered  very 
aggressive  by squaring each  coefficient. 

The greater flexibility of Ehlers filters opens up whole 
new avenues of technical analysis research. For example, the 
statistic can be some tangible parameter of market activity 
such as money flow or volume. Also, more arcane parameters 
such as Signal-to-Noise Ratio can be  used. In this case, the co- 
efficients where the Signal-to-Noise Ratio is the greatest would 
have the largest weight, discounting the price data values where 
the Signal-to-Noise Ratio is less. Also, Ehlers filters can be 
adaptive. For example, the length of the 5-bar momentum 
Ehlers filter in our example could be adaptive to  the length of 
the measured cycle period. Such a  filter would be both adaptive 
and nonlinear. 
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Figure 18.4. Performance of an adaptive 15-bar Ehlers filter compared to 
the performance of a 15-bar SMA. 
Chart created with Tradetution2OOOi@ by Omega  Research, Inc. 

The flexibility and adaptability of the Ehlers filter is demon- 
strated in Figure 18.4, where the statistic used is  the difference 
between the current price  and the previously calculated value of 
the filter. 

Since  whipsaw  signals tend to be  suppressed with Ehlers fil- 
ters, exciting new oscillators can  be  created by taking the differ- 
ence of Ehlers filters that have different  scales.  Imagine 
indicators analogous to RSI or Stochastics without whipsaws! 
Oscillators could  also  be  generated  from the differences of Ehlers 
filters by using a different statistic in each filter. 

Regardless of the flexibility of the Ehlers filter, it is useful to 
step back  and  reflect  on the motivation for  deriving this filter 
type. By so doing,  we  may  discover an optimum solution for the 
calculation of the coefficients. We know market data are most 
often nonstationary. We also know that we want to follow the 
sharp and sustained movements of price  as  closely as possible. 
This led us to use the Median filter as an edge detector. But not 
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Figure 18.5. Visualizing the sharpness of an edge. 

all edges are the same. We can visualize the sharpness of edges 
in Figure 18.5 by imagining looking down  on this figure  as  we 
would on a piece of paper, illuminated from  above our left shoul- 
der,  and  hanging  over the edge of a desk. The edge at  the top of 
Figure 18.5 is very  sharp,  as if the paper  were  creased. Continu- 
ing down  Figure 18.5, the light diffusion is more dispersed, 
giving the illusion that  the edge  becomes more rounded. In fact, 
the shading of Figure 18.5 was  generated by a Gaussian function 
whose standard deviation increased  from top to bottom. 

If we consider the gray  shading levels in Figure 18.5 as dis- 
tances,  we  have a way of computing filter coefficients in terms of 
sharpness of the edge. White is  the maximum distance in one 
direction from the median gray, and  black is  the maximum dis- 
tance in  the other direction. In this sense, distance is a measure 
of departure from the edge, talung into account the edge sharp- 
ness. Transitioning to price charts, the difference in prices  can be 
imagined  as a distance. Recalling the Pythagorean Theorem (in 
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which the length of the hypotenuse of a triangle is equal to  the 
sum of the squares of the lengths of the other two sides), we  can 
apply it to our needs  and  say that a generalized length at any data 
sample is the square root of the  sum of the squares of the price 
difference between that price  and  each of the prices  back  for the 
length of the filter window. The distances squared at each data 
point are the coefficients of the Ehlers filter. The calculation of 
the distancelike coefficients is perhaps best understood with ref- 
erence to  the EasyLanguage  code  for the filter in Figure 18.6. If 

Inputs : Price ( (H+L)  /2) , 
Length  (15 ; 

Vars : count ( 0  , 
LookBack ( 0  1 , 
SumCoef ( 0 )  , 
Num(O), 
Filt ( 0 )  ; 

Array:  Coef l251 ( 0 1 ,  
Distance2  [251 ( 0 )  ; 

For  count = 0 to  Length - 1 begin 
Distance2  [count] = 0; 
For  LookBack = 1 to  Length - 1 begin 

Distance2  [count] = Distance2  [count] + 
(price  [count] - Price  [count + LookBackl 1 * 
(Price  [count] - Price  [count + LookBackl 1 ; 

end; 
Coef  [count] = Distance2  [count] ; 

end ; 
Num = 0; 
SumCoef =O;  
For  count = 0 to  Length -1 begin 

Num = Num + Coef  [count]  *Price  [count] ; 

Sumcoef = Sumcoef + Coef  [count] ; 
end ; 
If  SumCoef <> 0 then  Filt = Num / SumCoef; 

Plot1  (Filt,  'Ehlers") ; 

Figure 18.6. EasyLanguage  code  for  the  distance  coefficient  Ehlers  filter. 
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Figure 18.7 Performance of the distance coefficient Ehlers filter. 
Chart created with TradeSttio&W@ b Omega Research, Inc. 

the prices  across the filter observation window are the same, 
then  the coefficients of the filter are all the same, and  we  have 
the equivalent of an SMA. However, if the prices shift rapidly, 
the distances from the increased  price points increase,  and 
higher weights are given to these filter coefficients. The per- 
formance of the distance coefficient  Ehlers filter is shown in 
Figure  18.7. 

The filter coefficients  can be made to be  even more nonlin- 
ear than calculated in Figure 18.6. For example, the distance can 
be  cubed  or  raised to  the  fourth power (by squaring the squared 
distance). A reciprocal Gaussian response is an even more non- 
linear function of distance that we can use to calculate the filter 
coefficients. These more nonlinear responses  follow the edges in 
price movement more aggressively.  However, the very fact that 
they are so nonlinear removes much of the gray  area in  the re- 
sponse. The  most nonlinear calculations produce results that are 
not discernable from median filters. The coefficients  become 
black  and white. The focus of our current research is to identify 
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the onset of the price shift more accurately. The currently cal- 
culated distance functions are related to the change of price. In 
calculus terms, this  is  the first derivative. The shift of the rate 
change of price is the ideal identifier for the impending price 
move. In calculus terms, we can use the maximum of the sec- 
ond derivative to pinpoint the onset of the price  change. The 
challenge is how to translate the second derivative into filter 
coefficients without introducing so much noise that  the filter 
response is unusable. 

The opportunities to use Ehlers filters in technical analysis 
are limitless. I am sure whole books will be devoted to cata- 
loging the various statistics and applications where they work 
best. In the meantime, you will have the opportunity to exploit 
them for  your own fun and profit. 

Key Points to Remember 

Market data tend to be nonstationary much of the time. 
Therefore, adaptive technique or nonlinear data processing is 
required  for maximum effectiveness. 
Ehlers filters are easy to compute. Compute the coefficient 
at each position in  the filter for the chosen statistic. Com- 
pute the filter as the  sum of the product of the prices times 
the coefficients  divided by the  sum of coefficients. 
Ehlers filters aggressively  follow sustained price shifts and 
revert to a FIR filter response when the prices  are in a trading 
range. 
A host of indicators and trading systems can be  derived  from 
Ehlers filters. 
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MEASURING MARKET SPECTRA 
Science is the refusal to believe 

on  the  basis of hope. 

"C.P. SNOW 

All major trading software platforms have the Fast  Fourier 
Transform  (FFT) tool available. Yet, using FFTs for market analy- 
sis is analogous to using a chainsaw at a wood-carving  conven- 
tion. While chainsaws are certainly effective, they are not the 
correct tool for the job.  Back in 1986, I wrote one of the first FFTs 
for traders using BASIC code  for an Apple II computer.' 
Although FFTs are powerful tools for many applications, there 
are better and  more  precise tools we can use for market analysis. 

A problem with FFTs is  that they are subject to several  con- 
straints. One constraint is that  there can  only  be an integer 
number of cycles in  the data window. For example, if we have  64 
data samples in our measurement window (a 64-point  FFT), the 
longest  cycle length we can measure is 64  bars. The next longest 
length has 2 cycles in  the window, or 6f/z = 32-bar  cycle. The next 
longest lengths are @A = 21.3  bars, % = 16  bars,  and so on. There- 
fore, the integer constraint results in a lack of resolution. In 
other words, a large gap exists between the measured  cycle 
lengths that can be  produced, in  the length of cycle  periods in 
which we wish to work. We cannot tell if the real cycle is 14  bars 

'Kaufman,  Perry J. llading Systems and Methods. 3rd ed. New York: 
John Wiley & Sons, 1998. 
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or  19  bars in length. Therefore, the spectrum measurement nec- 
essarily has a low resolution. 

The only way to increase the FFT resolution is  to increase 
the length of the data window. If we increase the data length to 
256  samples,  we  reach a 1-bar resolution for  cycle lengths in  the 
vicinity of a 16-bar  cycle.  However, obtaining this resolution 
highlights another constraint. The cycle measurement is valid 
only if the data are stationary over the entire data window. This 
means that a 16-bar  cycle must have the same amplitude and 
phase  over the total 16 full cycles. In other words, using daily 
data, a 16-day  cycle must be consistently present for  over a full 
year  for the measurement to be  valid. Can this happen? I don’t 
think so! By the  time a 16-bar  cycle occurs for more than several 
cycles, it will be  observed  by  every trader in  the world  and they 
will destroy that cycle by jumping all over it. Its potential long- 
term existence is the very cause of its demise! The only way to 
obtain a valid high-resolution cycle measurement is  to select a 
technique for which only a short amount of data is required. 
MESA fills this requirement. 

Still not convinced? Let us demonstrate this point with 
some measurements. Figure  19.1 shows how we have  converted 
the amplitude of a conventional bell-shaped spectrum display 
into gray density according to  the amplitude of the spectral 
components. Think of the gray shading  ranging  from white  hot 
to ice cold.  Shading the amplitude enables us to plot the spec- 
trum contour below the price  bars in  time synchronization. A 
white  line represents a sharp,  well-defined  cycle. A wide light 
gray splotch tells us  that  the top of the bell-shaped  curve is very 
broad  and that  the measurement has poor resolution. Figure  19.2 
is a 64-point FFT measurement of a theoretical 24-bar sine wave. 
Since this is a theoretical cycle with no noise, the measurement 
should be  precise. But it is not! The spectral contour shows that 
the measurement has very  poor resolution. The measured length 
could as easily  be 15  bars as 30 bars.  Figure  19.3 i s  a 64-point FFT 
taken  on real market data. Here, we can barely determine that 
the cycle is moving, but cannot definitively identify it. Revisit- 
ing these data later using the MESA measurement technique, we 
will see just how much more precise the MESA system is. 
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Figure 19.1. Spectrum  amplitude to shading  conversion. 

Figure 19.2. A 64-point FFT of a theoretical 24-bar cycle, 
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.Figure 19.3. A 64-point FFT of March 1996 Treasury Bonds. 

The notional schematic for the way MESA measures the 
spectrum is shown in Figure 19.4. The data sample is fed into 
one input of a comparator. This data sample can be any length- 
it can  even  be less than a single dominant cycle  period. The 
other input into  the comparator comes  from the  output of a dig- 
ital filter. The signal that is input into  the digital filter is  white 
noise (containing all frequencies  and amplitudes). This digital 
filter is tuned by the  output of the comparator until  the two 
inputs are as nearly alike as possible.  In short, what we have 
done is pattern matching in the  time domain. We have removed 
the signal components with  the filter, leaving the residual with 
maximum entropy (maximum disarray). 

Once the filter has been set, we  can  do  several things. First, 
we  can connect a sweep  generator to  the filter input and sense 
the relative amplitude of the output as the frequency  band is 
swept. This produces the bell-shaped spectral estimate similar 
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Figure 19.4. How MESA measures the spectrum. 

Figure 19.5. MESA measurement of a theoretical 24-bar cycle. 
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to the one shown in Figure 19.1. This spectral estimate is, in 
fact, the cycle content of the original data sample within the 
measurement capabilities of the digital filter. Second,  because 
we have a digital filter on a clock, we can let  the clock run  into 
the  future and  predict futures prices  on the assumption that  the 
measured  cycles will continue for a short time. 

The MESA spectrum measurement is notable in several 
respects.  Most important, only a small amount of data is 
required to make a high-quality measurement. The MESA algo- 
rithm is, therefore,  highly likely to be  able to make a measure- 
ment using nearly stationary data, as the data need remain 
stationary for only a short while. As previously indicated, cycle 

J October I November I December I l996 I Februaw 

! 

t 
t 

Figure 19.6. MESA spectrum measurement of March 1996 Treasury 
Bonds. 
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measurements are valid only if the data are stationary. Also, 
because the MESA algorithm requires  only a short  amount of 
data, we are able to exploit the short-term coherency of the 
market. This  is entirely consistent with  the Telegrapher’s  Equa- 
tion solution to the Drunkard’s  Walk  problem. This means that 
when the market is in a Cycle  Mode, the measured  cycle has 
predictive capability.  Additionally, the MESA approach makes 
high-resolution spectral estimates. The high-quality measure- 
den t  of the theoretical 24-bar  cycle is shown in Figure  19.5, 
where only one cycle’s worth of data is used in  the measure- 
ments. Here, the spectral contour is a single line, meaning that 
the bell-shaped curve is just a spike centered at  the 24-bar  cycle 
period.  Figure  19.6 shows the ebb  and  flow of the measured  cycle 
for the March  1996  Treasury Bonds. While clearly illustrated 
with  the MESA approach, this cycle characteristic was  only 
inferred in  the FFT measurement. 

m 

m 

m 

! 
m 

m 

Key Points to Remember 

The Fast  Fourier  Transform (FFT) is  not the proper tool to 
analyze market data. 
An FFT can measure only an integer number of cycles within 
its observation window. 
An FFT requires a large amount of data to achieve high- 
resolution measurements. If we are looking at market data 
over a long time span, the FFT is useless  because the data 
cannot fulfill the requirement to remain relatively station- 
ary in order to achieve a valid measurement. 
MESA operates by pattern matching in  the  time domain. 
Data outside the short observation window are rejected. 
There is typically  only one dominant cycle in the market at 
a time. 
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OPTIMUM PREDICTIVE FILTERS 
The impossible is often the untried. 

"JIM GOODWIN 

Technical analysis is necessarily reactive to  the action of the 
market. The indicators we develop are largely  generated to sense 
the direction in which the price is expected to go. The predictive 
nature of these indicators is based on correlation to past experi- 
ence, so the expectation logic runs as follows: If something 
happened  before, it will very likely happen  again.  However, no 
indicator is truly predictive in  the scientific sense. 

In this chapter, I describe a predictive filter, explain  how to 
generate this filter, and (most  important) define the conditions 
under which the filter can be most effectively  used.  Like all 
technical indicators, the Optimum Predictive filter cannot be 
used  universally.  However,  carefully  observing those conditions 
where it is appropriate  can make the  Optimum Predictive filter 
a valuable addition to your arsenal of technical analysis 
weapons. I extrapolate from the concept of Optimum Predictive 
filters and discuss another way to eliminate lag  from  moving 
averages. 

Optimum  Predictive  Filters 

An Optimum Predictive filter is simply the difference between 
the original function and its Exponential  Moving Average 
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(EMA).' That's it! It really is  that simple! While the implemen- 
tation  is rather uncomplicated, the derivation is considerably 
more complex. In general, the response of an  optimum system is 
described  by the solution of the Wiener-Hopf equation, a discus- 
sion of which is well beyond the scope of this book. 

Having  defined an Optimum Predictive filter, we must 
quickly specify the conditions that are required  for that filter to 
be  valid. There are two such conditions. One condition is that 
the amplitude swings of the original function must be limited. 
The second condition is that  the probability of the function pas- 
sing through zero value must satisfy a Poisson probability distri- 
bution. It turns  out  that  these conditions are easy to satisfy. 

Without getting into  the math, a Poisson probability distri- 
bution tells us that  the number of crossings  we  expect are not far 
removed  from the average number of crossings. This is simply 
another way of saying that  the market  must be in a Cycle  Mode. 
An approximation to  the Poisson probability distribution can  be 
achieved using market data if the prices  have  been  detrended. It 
is absolutely crucial that we detrend because buy/sell signals are 
obtained by the crossing of the signal  and the predictive filter 
lines. If the price has not been  properly  detrended to meet the 
Poisson  probability constraint, the lines will not cross  correctly. 

Since  we  desire a predictive filter, lag must be  held to an 
absolute minimum. However, the price data must have at least 
some smoothing to separate the valid  signals  from the false. We 
use a 4-bar  Weighted  Moving  Average  (WMA)  because it has a 
lag of only 1 bar. We detrend by taking the smoothed price  less 
the smoothed price 2 bars  ago. This particular momentum has 
the phase characteristics of a Hilbert Transformer  and a lag of 
only 1 bar. As a practical matter, we  need to smooth again  after 
detrending to minimize the noise that was introduced by the 
detrending action. We therefore have 3 bars of lag just to obtain 
the proper  detrended  signal. This  will cause some phase distor- 
tion of the output.  The phase  lag due to  the 2-bar  lag is 3*360/ 

lLee,  Y.W. Statistical Theory of Communication. New York: John 
Wiley 81 Sons, 1966. 
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Period.  However, the Hilbert Transformer  provides a 90-degree 
phase  lead.  Therefore, if the data have a cycle  period of 12 bars, 
the detrended  price will be exactly in phase with  the original 
price. The detrended  price will lead in phase  for  longer  cycle 
periods  and will lag in phase  for shorter cycle  periods.  When the 
market is in a Trend  Mode, the cycle  periods tend to be  longer. 
As a result, under Trend  Mode conditions, signals that are too 
early will be  produced.  However, the Poisson probability crite- 
rion is not likely to be met under these conditions. In any event, 
the signals are invalid when the market is in a Trend  Mode. 
These limitations  must be  accepted. 

The filtered output of the EMA should lag the detrended 
price  by about 45 degrees in phase.  When  we see a 45-degree 
phase lag,  we know that  the dominant cycle component is 
approximately at  the cutoff  frequency of the EMA filter. The 
phasor  diagram in Figure  20.1 shows us why this  is so and 
demonstrates why the prediction works at all. The Detrender is 
a phasor at a reference  angle of zero and rotates counterclock- 
wise. The DetrendEMA  lags the Detrender by about 45 degrees. 

-DetrendEMA Predict 

l 

Figure 20.1. The predict Phasor Diagram. 
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When  we subtract the  latter from the former in vector arith- 
metic, we reverse the direction of the DetrendEMA  and then 
perform vector addition. When  we  do this, the Predict vector 
results. 

Since the DetrendEMA is at  the cutoff  frequency of the 
EMA, its amplitude is about 70 percent of the Detrender ampli- 
tude. At a 45-degree  angle, the real and  imaginary components 
are equal at a relative amplitude of 0.5 (0.7*Cos(45)). The vector 
subtraction in complex arithmetic is Predict = 1 - 0.5 + j0.5 = 0.5 
+ j0.5. Since the two components of the Predict  phasor  are both 
0.5, the absolute amplitude of the Predict  phasor is 0.7  from the 
Pythagorean Theorem. Therefore, the Predict  phasor must be 
multiplied by  1.4 to have the same normalized amplitude as the 
Detrender phasor. 

Frequency components within  the EMA passband will not 
be attenuated as much as those components outside the pass- 
band.  Additionally, the EMA  passband’s frequency components 
will have less than 45  degrees of phase  lag. If the phase  lag is 
small, then  the vector  difference between the Detrender and the 
DetrendEMA will be a vector with a very small amplitude. The 
small-amplitude Predict vector contributes little as a predictor. 
However, if the DetrendEMA  lags the Detrender by much more 
than 45  degrees, it falls outside the passband of the EMA filter, 
thus severely  reducing its amplitude. In this case, the Predict 
vector will lead the Detrender by less than 45  degrees  and will 
also have a very small amplitude. Therefore,  having the fre- 
quency component outside the EMA passband also does not con- 
tribute to an effective  predictor. 

A solution does exist to provide the proper  phase relation- 
ship.  First,  we must compute the market cycle, using the Hilbert 
Transform. Then, we use the computed cycle  period to compute 
the desired alpha for the EMA.  From Chapter 13, we  remember 
that  the calculation is 

Figure 20.2 gives us the code to perform all the calculations 
for the Optimum Predictor. As we have seen before, the major- 



Inputs : Price ( (H+L) /2) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 )  , 
I1 (01,  
Q1 (01,  
jI (01,  
jQ(O), 
I2 (01,  
Q2 (01,  
Re (01 ,  
Im(O), 
Period ( 0 )  , 
SmoothPeriod ( 0 )  , 
Detrender2 ( 0 )  , 
Smooth2 ( 0 )  , 
alpha ( 0 )  , 
DetrendEMA ( 0 , 
Predict ( 0 )  ; 

If  CurrentBar z 5  then  begin 
Smooth = (4*Price + 3*Price[l] + 2*Price[2] + 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
Price[3]) / 10; 

.5769*Smooth [41 - .0962*Smooth L61 ) * ( .075* 
Period[l] + .55) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender 141 - .0962*Detrender  [6l ) * 
( .075*Period  [l] + .55) ; 

I1 = Detrender[3] ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
jI = ( .  0962*11 + .5769*11[21 - .5769*11[4] - 

.0962*11[61) * ( .075*Period 111 + .55) ; 
jQ = (.0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 

.0962*Q1[6] ) * ( .075*Period  [l] + .55) ; 

{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

I 
(continued) 

Figure 20.2. EasyLanguage  code  for  the  Optimum  Predictor. 
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{Smooth  the I and  Q  components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 
Q2 = .2*Q2 + .8*Q2 [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 

Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im c>  0 and  Re c>  0 then  Period = 

If Period > 1.5*Period[l]  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6  then  Period = 6; 
If  Period  50  then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

{Optimum  Predictor} 
Detrender2 = .5*Smooth - .5*Smooth[2]; 
Smooth2 = (4*Detrender2 + 3*Detrender2  [l] + 

2*Detrender2 121 + Detrender2 L311 / 10; 
alpha = 1 - ExpValue(-6.28/Period); 
DetrendEMA = alpha*Smooth2 + 

(1 - alpha)  *DetrendEMA[l] ; 
Predict = 1.4*(Smooth2 - DetrendEMA); 

Plot1  (Smooth2,  "Signal") ; 
Plot2  (Predict,  "Predict") ; 

Im = I2*Q2  [l] - Q2*12  [l] ; 

360/ArcTangent(Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

End ; 

Figure 20.2. (Continued). 

ity of the code involves the computation of the period using 
the Homodyne Discriminator algorithm. Once the period has 
been  computed, the  Optimum Predictor i s  found in just a few 
lines of code.  First, the minimum-length Hilbert Transformer is 
used to compute the Detrender2 value from the prices that have 
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been smoothed by the 4-bar  Weighted  Moving  Average  (WMA). 
Detrender2 is smoothed in  the 4-bar WMA to produce  Smooth2. 
The alpha of the EMA is computed from the computed period, 
and the EMA  of Smooth2 is taken using that alpha and is called 
the DetrendEMA. The difference between Smooth2 and the 
DetrendEMA is multiplied by  1.4 to produce the Predict  phasor. 
Finally, the Smooth2 and  Predict  phasors are plotted as indi- 
cators. 

The  Optimum Predictor is plotted in Figure 20.3 as the sub- 
graph  below the price chart. Buy and sell signals  occur when the 
Predict  and Smooth2 lines cross.  Most of these signals are in- 
deed prescient. The  Optimum Predictor  could  probably  work 
best in trading systems when used in conjunction with other 
rules to eliminate the false  signals. Alternatively, the turning 
point of the LeadSine of the Sine  wave Indicator could  be  used  as 
a confirming signal. 

Figure 20.3. The Optimum Predictor accurately indicates many price turning 
points. 
Chart created with TradeSttion 2OOOi@ by Omega Reseurcb, Inc. 
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Predictive  Moving  Averages 

The concept of taking a difference of lagging line from the origi- 
nal function to produce a leading function suggests extending 
the concept to moving  averages. There is no direct theory for 
this, but it seems to work pretty well. If I take a 7-bar WMA of 
prices, that average  lags the prices by 2 bars. If I take a 7-bar 
WMA of the first average, this second  average is delayed another 
2 bars. If I take the difference between the two averages  and  add 
that difference to  the first average, the result should be a 
smoothed line of the original  price function with no lag.  Sure, I 
could try to use more lag  for the second  moving  average, which 
should produce a better predictive curve.  However, remember 
the lesson of Chapter 3t An analysis curve cannot precede an 
event. You cannot predict an event before it occurs. 

If we then  take a 4-bar WMA of the smoothed line to create 
a l-bar lag, this lagging line becomes a signal when the lines 
cross. This i s  as close to an ideal indicator as  we can get. There 

Inputs : Price ( (H+L) /2) ; 

Vars: WMAl(0) , 
WMA2 (01,  
Predict ( 0  , 
Trigger (0) ; 

WMAl = (7*Price + 6*Price [l] + 5*Price [2] + 4*Price[3] 
+ 3*Price[4] + 2*Price [S] + Price [6] ) / 28; 

WMA2 = (7*WMA1 + 6*WMA1 [l] + 5*WMA1[21 + 4*WMA1[3] + 
3*WMA1[41 + 2*WMA1[51 + WMA1[6]) / 28; 

Predict = 2*WMA1 - WMA2; 
Trigger = (4*Predict + 3*Predict [l] + 2*Predict[2] + 
Predict) / 10; 

Plot1 (Trigger, "Trigger") ; 
Plot2 (Predict, "Predict") ; 

~~ 

Figure 20.4. EasyLanguage code to compute predictive  averages. 
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Figure 20.5. Predictive  moving  average and trigger signal. 
Chart created  with  TradeStation 20OUi@ by Omega Research, Inc. 

is no  phase &stortion. The code to compute this indicator is 
given in Figure 20.4. The code  could hardly be simpler. A sample 
of the indicator is shown in Figure 20.5. 

Key Points to Remember 

A theoretically optimum predictor exists. 
The  Optimum Predictor is calculated as the difference  be- 
tween a detrended signal  and its Exponential  Moving Aver- 
age  (EMA). 
The EMA constant of the Optimum Predictor is computed 
using the measured dominant cycle  as the cutoff  period of 
the filter. 
Moving  average  lag can be eliminated by taking the moving 
average of the first moving  average, taking the difference 
between them, and adding that difference  back onto the first 
moving  average. 
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WHAT YOU SEE 
IS WHAT YOU GET 
Success is a journey, not a destination. 

-BEN SWEETLAND 

That famous  half-glass of water-optimists see it as  half-full  and 
pessimists see it as  half-empty. An engineer  sees the glass  as  hav- 
ing  been  designed with too much capacity. That which we  see is 
really a matter of perception. Market technicians have  designed a 
wide  variety of techniques to visualize what has happened in  the 
past in order to infer what the  future holds. Candlestick charts 
and  Point  and  Figure charts are two examples of charting price 
data.  When it comes to indicators, there is a plethora of wiggles, 
squiggles,  zigzags,  channels,  and so on, that requires  volumes to 
describe. 

I would  now like  to add to  this cacophony of displays one so 
new and  novel, one so sensitive, that it dramatically pinpoints 
variations and anomalies that cannot be  removed with mathe- 
matical filters-at least within the lag constraints imposed by 
trading considerations. All we do is plot the Inphase and Quad- 
rature components of the Hilbert Transform. We can certainly 
plot these components in a subgraph  below the price chart so 
they resemble an oscillator. However, if we were to plot these 
two components against  each other in an orthogonal set of coor- 
dinates (an x-y plot), we would be exactly tracing out the phasor 
diagram. Plotting the phasor is  the objective of this process. 
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The first step in generating the phasor  display is to compute 
the Inphase and Quadrature components exactly the way  we  did 
in Chapter 7. The only difference is  that we must plot the I1 and 
Q1 components in a subgraph.  Additionally,  we must include a 
line of code to  output  the I1 and Q1 values into an ASCII file. 
Figure 21.1 leads  you through this EasyLanguage  code. 

Inputs : Price ( (H+L) /2) ; 

Vars:  Smooth(0) , 
Detrender ( 0 )  , 
I1 ( 0 )  , 
Q1 (01 ,  
jI (01, 
jQ(O), 
I2 ( 0 )  , 
Q2 ( 0 1 ,  
Re (01 ,  
Im(O), 
Period ( 0 )  , 
SmoothPeriod ( 0 )  ; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price[ll + 2*Price L21 + 
Price[3]) / 10; 

Detrender = (.0962*Smooth + .5769*Smootht21 - 
.5769*Smooth  [4l - .0962*Smooth[61) * ( .075* 
Period[ll + ,541 ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .  0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender [61 ) * ( .075* 
Periodtl] + .54) ; 

I1 = Detrender  [3] ; 

{Advance  the  phase  of  I1  and  Q1  by  90  degrees} 
(continued) 

Figure 21.1. EasyLanguage code to create an ASCII file of Inphase and  Quad- 
rature data. 
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j I = ( .0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1[21 - .5769*Q1[41 - 
.0962*11[6] ) * ( .075*Period[ll + .55) ; 

.0962*Q1[6] ) * ( .075*Period[l] + .55) ; 

{Phasor  addition  for 3 bar  averaging) } 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the I and Q components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2 111 ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2 111 ; 
Im = I2*Q2  [l] - Q2*12 111 ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im c>  0 and  Re C S  0 then  Period = 

If  Period > l.S*Period[l]  then  Period = 

If  Period c .67*Period[ll  then  Period = 

If  Period c 6 then  Period = 6; 
If  Period S 50 then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[ll; 

Plotl(I1, "I") ; 

360/ArcTangent  (Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

Plot2  (Ql, 'Q") ; 

If  Date S Date  [l]  then  Print  (File  ("c:\hilbert\ 
IQ.csv"),  date, "," , 11, ",", Q11 ; 

End ; 

Figure 2  1.1. (Continued). 
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The final line of code creates a file in  the HILBERT directory 
on your C: drive. You should have created this directory using 
Windows  Explorer  before  you run  the program. The file is 
IQ.CSV, a comma-delimited ASCII file. You will import this file 
into Excel to generate the phasor  display.  Reading the file into 
Excel is straightforward. Just click FILE . . . OPEN  and position 
C:\HILBERT in  the Look  In  dialog  box.  Change the Files of Type 
dialog  box to Text  Files. The file IQ should then appear in  the 
main dialog  box.  Highlight this file and click OPEN, and the 
three columns of the file will be  displayed. 

The phasor is created by highlighting roughly  30  rows of the 
two right-hand columns and clicking on the Chart Wizard in  the 
Excel  toolbar.  In the first step of the Wizard, select the XY(Scat- 
ter) Plot  and then choose the option to show the data points con- 
nected by smooth lines. Then click NEXT. Accept the defaults 
of the Wizard step 2 by clicking NEXT. In the Wizard step 3, 
select the Gridlines tab and then unselect the option to show 
major  gridlines.  Skip the Wizard step 4 by clicking FINISH. 
Click on the Series 1 legend and press the delete key to remove 
it. Finally, click on the chart and  drag it so the gray  graphical 
area is approximately square. 

When  you finish these operations, you will see a display sim- 
ilar to  that shown in Figure  21.2, which depicts 29 points of a 
theoretical 30-bar sine wave. Due to the sign convention of com- 
puting the Quadrature component, the phasor track rotates 
clockwise. The cycle  period  can  be estimated by counting the 
points in any quadrant and multiplying by 4. A perfect  cycle will 
plot out as a circle in  this kind of display. 

We will now  follow the phasor  display  over  120 trading days 
of the June 1996  Treasury Bonds contract. I like  to use this old 
data set because it transitions from a Trend  Mode to a Cycle 
Mode,  and  back to a Trend  Mode.  Since there are no intermedi- 
ate modes, this data set facilitates explanation. 

Figure  21.4 is a phasor plot for the data in  the shaded  box of 
Figure  21.3.  Prices start  in a Trend  Mode at the left edge of the 
box. The  starting point is located in the first quadrant of Figure 
21.4. Since the market is  in a Trend  Mode, the phase hardly 
advances  for about the first 17  bars. Then, due to  the price  dip 
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C 

Figure 21.2 Rventy-nine points of a  30-bar  sine wave. A perfect 
cycle  plots as a  circle in the phasor display. 

and  recovery, an apparent 12-bar  cycle started. I arrived at this 
cycle  period  by counting the points in  the left-half  plane  and 
doubling them. After another few points, this cycle fails and the 
Trend  Mode is reestablished for data to  the end of the shaded 
box. The data set ends in  the Trend  Mode in  the fourth quadrant 
of the phasor plot. 

The Trend  Mode continues as depicted in  the shaded box in 
Figure  21.5  and as a phasor in Figure  21.6, starting in  the fourth 
quadrant. There is no definitive cycle movement in  the first 22 
bars  except  for about a half cycle of a 14-bar  cycle. I estimated 
the period of this half cycle  by counting the number of points in 
the right half of the plot for this point in time. After this brief 
cyclic burst, the phasor  wanders almost aimlessly for another 15 



Figure 21.3. First 40-bar analysis section of Treasury  Bonds.  The shaded win- 
dow is plotted as a phasor in  Figure 21.4. 
Chart  created  with  TradeStatiota2OOOi@ by Omega  Reseamh, Inc. 

Figure 21.4. Phasor diagram for Figure 21.3 data. 

220 



L 

Figure 21.5. Second 40-bar analysis section of Treasury  Bonds.  The shaded 
window is plotted as a phasor in Figure 21.6. 
Chart created with Tradesttion2OOOP by Omega  Research, Inc. 

Figure 21.6. Phasor diagram for Figure 21.5 data. 
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bars. The  path of the phasor  even turns counterclockwise dur- 
ing this period. A counterclockwise rotation theoretically 
means that  time  is running backwards. This  is impossible. 
Therefore, the only rational explanation for the path of the pha- 
sor is that  the market is in a Trend  Mode, where the advancing 
of phase has no meaning. 

A new  cycle is established at  the top of Figure  21.6,  and  con- 
tinues for  14  bars to  the end of the data set. The cycle  period is 
about 20  bars, estimated by counting the points in  the right half 
of the plane during this point in time. The cycle shape is cer- 
tainly distorted due to large amplitude fluctuations, but it is 
rotating about the origin at a relatively constant rate. 

Near textbook cycles continue in Figure  21.8  for about 1.5 
cycles  from the beginning of the data period shown in Figure 
21.7. Just by counting the points over one full rotation, we can 
estimate the cycle  period to be about 16  bars.  However, about 21 
bars  from the beginning of the data set, another anomaly 
appears. Two very fast whiffles,  or  curlycues,  appear in  the data. 
The shorter of these appears to be about a 5-bar  cycle superim- 
posed on a 12-bar  cycle; both of these appear to be  superimposed 
on the preexisting 16-bar  cycle. 

Returning to  the phasor  diagram schematic, this  time in Fig- 
ure 21.9,  we  can see an explanation for these whiffles. 

A shorter subordinate cycle  can  be  viewed as a phasor that 
rotates at the  tip of the Dominant Cycle  phasor, rotating at a 
rate faster than  that of the Dominant Cycle. The Dominant 
Cycle  phasor is rotating at  its own rate. Thus, an evanescent 
five-day  cycle  produces a signature like the smaller whiffle in 
Figure  21.8. In fact, the shorter whiffle is superimposed on the 
longer  12-bar  whiffle. The really interesting point is that  the 
two whiffles indicate that  the phase of the dominant cycle 
has stopped  advancing,  signaling the beginning of a Trend 
Mode.  With this identification, we see that  the Trend  Mode 
started about 17 bars  before the end of the data. Having iden- 
tified the Trend onset well before the major  price movement, 
we are well-equipped to maximize the profit of the Trend 
movement. 

A subordinate cycle  does not necessarily  have to be a com- 
plete cycle.  Fractional subordinate cycles can account for erratic 



Figure 21.7 Third 40-bar analysis section of Treasury  Bonds.  The shaded win- 
dow is plotted as a phasor in Figure 21.8. 
Chart mated with TraakStatkm2OOOi @ by Omega Research, Inc. 

Figure 2 1 .S. Phasor diagram for Figure 2 1.7 data. 
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Subordinate Cycle 

- 

Dominant Cycle 

Figure 21.9. A subordinate cycle phasor rotates 
at the arrowhead of the  dominant cycle phasor. 

paths in  the phasor  plot, such as the one that exists near the ori- 
gin of Figure  21.6. 

Subordinate cycles  whose  periods  are  longer than  the period 
of the dominant cycle are more difficult to visualize. They 
throw the trajectory of the dominant cycle off center. Whether 
the subordinate cycle is shorter or longer than  the Dominant 
Cycle, the phasor plot immediately identifies the impact of sub- 
ordinate cycles without performing any additional filtering. 
Additional filtering would certainly introduce lag that would 
make further analysis even more difficult. 

The key  advantage of being acquainted with  the phasor plot 
is  that you  now have a tool to precisely estimate the cyclic turn- 
ing points. You want  to sell when the Inphase component is at 
its maximum and  buy when the Inphase component is at its 
minimum. These buy  and sell rules are subject,  however, to  the 
lag of the computation of the Inphase component. Reviewing 
the EasyLanguage  code, we see that there i s  a l-bar lag due to  the 
4-bar WMA, a 3-bar lag due to  the detrending (the center of the 
filter), and a 3-bar  lag  for the final computation of  11. The buying 
and selling opportunity must account for this 7-bar  lag in  the 
computation of the Inphase component. If you  have a 14-bar 
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dominant cycle, the 7-bar  lag constitutes a 180-degree shift of 
the phasor location (i.e., a half cycle). Keep in mind that  the 
detrending operation in  the computation introduced a 90-degree 
phase  lead. Thus, you  need compensate only for a net 90-degree 
lag (a quarter cycle) for this 14-bar  cycle.  Said another way,  you 
must anticipate the maximum Inphase component by 3.5 bars 
(l% bars) for a selling opportunity and anticipate the minimum 
Inphase component by 3.5 bars  for a buying opportunity. This 
precision technique is vastly superior to  the half-cycle  offsets 
you  may  have seen described in most trading literature. 

Since the compensation calculation is so important, we will 
try to clarlfy  by using another example.  Suppose the dominant 
cycle is 21  days. The 7-bar  lag  would be one-third of a cycle,  or 
120  degrees.  Removing the 90-degree  lead that occurred due to 
detrending, the  resultant lag of the Inphase component is only 
120 - 90 = 30 degrees. Thirty degrees is one-twelfth of a cycle,  or 
1.75  days in this example of a 21-bar  cycle. So, in this case,  you 
would have to anticipate the Inphase maxima and minima by 
only about two days. 

Key Points to Remember 

A phasor  diagram  can  be  displayed  by plotting the Inphase 
and Quadrature components of the Hilbert Transform in an 
Excel x-y scatter plot. 
The existence of more than one cycle  can be identified by 
whiffles in  the phasor  diagram. 
The phasor  diagram can help you anticipate the precise 
cyclic turning points in  the market. 
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na en you’ve ~ i n i s ~ e ~  c ~ ~ n ~ i n ~ ,  you’re ~ i n i s ~ e ~ .  

-BENTAMIN FRANKLIN 

It is not an uncommon occurrence that when I reach the end of 
a seminar, breathless and e ~ a u s t e d ,  I get a question like ‘‘Can I 
use the cycle to optimize an RSI?” My immediate unspo~en 
reaction is ‘(Why would someone want to do that?” I had just 
shown the audience the derivation of a theoretically optimum 
predictor, described the Sinewave Indicator that has few false 
whipsaw signals in the Trend Mode, and introduced an Instanta- 
neous Trendline as a Trend Mode trading tool. After all, how can 
anything be better than theoretically optimum? Is there really a 
need for optimized conventional indicators? Then upon further 
reflection, I finally realized that this was exactly the question 
that intrigued me about technical analysis. I was unwillin 
use a 14-day period in the RSI just because Welles Wilder said so. 
My quest for the best way to adapt to market conditions has led 
to all the research I have done, the results of which are chroni- 
cled in this book. 

So, what is the best indica~or? There is no single correct 
answer to that question. Everything is relative. Some indi~ators 
work better in one market than another. It may also depend on 
the preference of the trader. Using several indicators together 
may uncover a synergism unavailable to one indicator alone. 
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Many serviceable indicators exist. Improving them by mak- 
ing them adaptive to  current  market conditions should be 
the objective of every trader and is the object of this book. In 
this final chapter, I review three standard indicators: Relative 
Strength Indicator (RSI), Stochastic, and the Commodity Chan- 
nel Indicator (CCI). This review includes a discussion of making 
these indicators adaptive to  the measured  cycle  period using the 
Homodyne Discriminator. 

Welles  Wilder  defined the RSI as1 

RSI = 100 (loo/( 1 + RS)) 

where RS = (Closes Up)/(Closes Down) 
= CU/CD 

RS is shorthand for  Relative Strength. That is, CU is the  sum of 
the difference in closing  prices  over the observation period 
where that difference is positive.  Similarly,  CD is the  sum of the 
difference in closing  prices  over the observation period where 
that difference is negative, but  the  sum is expressed  as a positive 
number. When we substitute CU/CD for RS and simpllfy the 
RSI equation, we get 

RSI = 100 - 100 
1 + CU/CD 
1 OOCD 

CU + CD = 100 - 

- lOOCU + 1OOCD - lOOCD - 
CU + CD 

1oocu 
CU + CD 

RSI = 

'Wilder, J. Welles, Jr. New Concepts in Technical nuding Systems. 
Winston-Salem, NC: Hunter Publishing, 1978. 
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In other words, the RSI is the percentage of the  sum of the 
delta closes up to  the  sum of all the delta closes  over the obser- 
vation period. The only variable here is the observation period. 
For maximum effectiveness, the observation period should be 
half the measured dominant cycle  period. If the observation 
period is half the dominant cycle  for a pure sine wave, the closes 
up is exactly equal to  the total closes during part of the cycle 
from  the valley to  the peak. In this case, the RSI would  have a 
value of 100. During another part of the cycle-the next half 
cycle-there would be no closes  up. During this half  cycle, the 
RSI would have a value of zero. So, in principle, half the meas- 
ured cycle is the correct choice  for the RSI observation period. In 
Figure  22.1, the EasyLanguage  code measures the cycle  period 
using the Homodyne Discriminator algorithm. It  then uses that 
period  as the basis  for finding CU and CD,  and computing the 
RSI. Since half the cycle  period  may not be the universal answer, 
we include a CycPart input as a modifier. This  input allows  you 
to optimize the observation period  for  each particular situation. 

The optimized RSI tends to be in phase with  the original 
price data. This suggests a way to  turn a good indicator into a 
great indicator. If we subtract 50 from the optimized RSI, we 
would get a zero mean and thus tend to have Poisson-like statis- 
tics on the RSI’s zero  crossings. If that were the case, we could 
smooth the optimized RSI and make an  Optimum Predictive fil- 
ter from it. That way we could anticipate signals rather than 
wait for signals to cross the 30 percent and 70 percent marks 
for confirmation as is done with the standard indicator. I will 
leave it to you to decide which method best suits your needs  and 
purposes. 

Stochastic 

The name of this indicator is rather amusing because the  in- 
dicator has  absolutely  nothing to do with a statistical  sto- 
chastic process. A stochastic process is defined as a randomly 
determined sequence of operations. When the indicator was 
forwarded by Rick Redmont to  Tim Slater, then president of 
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Inputs : Price ( (H+L) /2 1 , 
CycPart ( .S 1 ; 

If  CurrentBar > 5 then  begin 
Smooth = (4*Price + 3*Price  [l] + 2*Price[2] + 
Price  [3] ) / 10; 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
.5769*Smooth  [41 - .0962*Smooth  [61) * ( .075* 

Period[l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = (.0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender  [6] ) * 
( .075*Period  [l] + .54) ; 

I1 = Detrender  [3] ; 

{Advance  the  phase of I1  and  Q1  by  90  degrees} 
jI = ( .0962*11 + .5769*11[21 - .5769*11[41 - 

.0962*11[6] ) * ( .  075*Period[ll + .54) ; 

.0962*Q1[6] ) * ( .075*Period  [l] + .54) ; 
jQ = ( .0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 

(continued) 

Figure 22.1. EasyLanguage code to compute the adaptive RSI. 
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{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the I and Q components  before  applying 
the  discriminator} 

I2 = .2*12 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l] ; 
If  Im c>  0 and  Re c >  0 then  Period = 

If  Period > 1.5*Period[l]  then  Period = 

If  Period c .67*Period[l]  then  Period = 

If  Period c 6 then  Period = 6; 
If  Period  50  then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[l]; 

cu = 0; 
CD = 0; 
For  count = 0 to Int(CycPart*SmoothPeriod) - 

360/ArcTangent  (Im/Re) ; 

1.5*Period  [l] ; 

.67*Period  [l] ; 

1 begin 
If  Close[countl - Close[count + 13 > 0 then 
CU = CU + (Close[countl - 
Close  [count + l] ) ; 

CD = CD + (Close  [count + 13 - 
Close  [count] ; 

If  Close[countl - Close[count + l] < 0 then 

End ; 
If CU + CD c>  0 then  RSI = 1 O O * C U / (W + CD) ; 

Plot1  (RSI, "RSI') ; 

End ; 

Figure 22.1. (Continued). 
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Compu-Trac, the word stochastic was  scribbled in  the margin. 
Tim thought that was a good name,  and it stuck.  The indicator 
has since been  popularized by  Dr.  George  Lane. 

The Stochastic measures the current closing  price relative to 
the lowest low over the observation period. It then normalizes 
this  to  the range between the highest high  and the lowest low 
over the observation period. In equation form this is 

Stochastic = 
Close - LL 
m - L L  

If the current closing  price is equal to the highest high over the 
observation period, then  the Stochastic has a value of 1. If the 
current closing  price is equal to  the lowest low over the obser- 
vation period, then  the Stochastic has a value of zero. These are 
the limits over which the Stochastic can range. 

To optimize the Stochastic for the measured  cycle, the cor- 
rect fraction of the cycle to use is one-half, as the Stochastic can 
range  from its  minimum  to  its maximum on  each half  cycle of 
the period. As before, the code  for the optimized Stochastic 
(given in Figure 22.2) measures the cycle  period using the Homo- 
dyne Discriminator algorithm and then uses that period as the 
basis  for  finding HH and LL and computing the Stochastic. Since 
half the cycle  period  may not be the universal answer, we in- 
clude a CycPart input as a modifier. This  input allows you to 
optimize the observation period  for  each particular situation. 

The optimized Stochastic tends to be in phase with  the orig- 
inal price data. This suggests a way to turn a good indicator into 
a great  one. If we subtract 50 from the optimized Stochastic, we 
would  get a zero mean and thus tend to have Poisson-like statis- 
tics on the Stochastic’s  zero  crossings. If that were the case, we 
could smooth the optimized Stochastic and make an Optimum 
Predictive filter from it. That way  we  could anticipate signals 
rather than  wait for  signals to cross the 20 percent and 80 per- 
cent marks for confirmation as is done with  the standard indica- 
tor. I will leave it to you to decide which method best suits your 
needs  and  purposes. 
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I 
Inputs : Price ( (H+L) /2), 

CycPart ( .  5) ; 

Vars : Smooth ( 0 1 , 
Detrender ( 0 )  , 
I1 (01, 
Q1 ( 0 )  , 
jI (01, 
jQ(O), 
I2 (01 ,  
Q2 (01 ,  
Re (01,  
Im(O), 
Period ( 0  , 
SmoothPeriod(O), 
count ( 0 )  , 
HH(O), 
LL(O), 
Stochastic ( 0 )  ; 

If  CurrentBar > 5  then  begin 
Smooth = (4*Price + 3*Price[l] + 2*Price[2] + 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
Price[3]) / 10; 

.5769*Smooth [4] - .0962*Smooth  [6] ) * 
( .075*Period  [l] + .54) ; 

{Compute  Inphase  and  Quadrature  components} 
Q1 = ( .0962*Detrender + .5769*Detrender  [2] - 

.5769*Detrender  [4] - .0962*Detrender  [6] ) * 
( .075*Period  [l] + .54) ; 

I1 = Detrender[3] ; 

{Advance  the  phase of I1  and  Q1  by  90  degrees} 
jI = ( .  0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = ( .  0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 
.0962*11[6] ) * ( .075*Period  [l] + .54) ; 

.0962*Q1[61) * ( .075*Period [l] + -54) ; 
(continued) 

Figure 22.2. EasyLanguage code to compute the adaptive  Stochastic. 
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{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - j Q ;  
Q2 = Q1 + jI; 

{Smooth  the I and Q components  before  applying 
the  discriminator} 

I 2  = .2*12 + .8*12 [l] ; 
Q2 = .2*Q2 + .8*Q2 [l] ; 

{Homodyne  Discriminator} 
Re = I2*12 [l] + Q2*Q2 [l] ; 
Im = I2*Q2 [l] - Q2*12 [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l] ; 
If Im <> 0 and  Re <> 0 then  Period = 

If  Period 5 1.5*Period[ll  then  Period = 

If Period < .67*Period[ll  then  Period = 

If Period < 6 then  Period = 6; 
If  Period > 50 then  Period = 50; 
Period = .2*Period + .8*Period[l]; 
Smoothperiod = .33*Period + .67*SmoothPeriod[l]; 

HH = High; 
LL = Low; 
For  count = 0 to Int(CycPart*SmoothPeriod) - 
1 begin 

360/ArcTangent  (Im/Re) ; 

1.5*Period  [l] ; 

.67*Period [l] ; 

If High[count] HH then HH = High[count] ; 
If Low[countl LL  then  LL = Low  [count] ; 

End ; 
If  HH - LL <> 0 then  Stochastic = (Close - LL) / 

(HH - LL); 
Plot1  (Stochastic,  "Stoc") ; 

End ; 

Figure 22.2. (Continued). 



Making  Standard Indicators Adaptive 235 

Commodity  Channel  Index 

Refer to Figure 22.3 through discussion for  EasyLanguage 
coding. The Commodity Channel Index (CCI) computes the 
average of the median price of each  bar  over the observation 
period.2 It also computes the Mean Deviation ( M D )  from this 
average. The CC1 is formed  as the current deviation from the 
average  price normalized to  the MD. With a Gaussian probabil- 
ity distribution, 68 percent of all possible outcomes are con- 
tained within the first standard deviation from the mean. The 
CC1 is scaled so that values  above +l00 are above the upper first 
standard deviation from the mean and values  below -100 are 
below the lower first standard deviation from the mean. Multi- 
plying the MD in  the code  by 0.015 implements this normaliza- 
tion. Many traders use this indicator as an overbought/oversold 
indicator with 100 or  greater indicating that  the market  is over- 
bought, and -100 or less that  the market is oversold.  Since the 
trading channel is being  formed  by the indicator, the obvious 
observation period is the same as the cycle length. Since the 
complete cycle  period  may not be the universal answer, we 
include a CycPart input as a modifier. This input allows  you to 
optimize the observation period  for  each particular situation. 

‘Lambert, Donald R. “Commodity  Channel Index.” Commodities 
Magazine (October 1980): 40-41. 
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Inputs : Price ( (H+L) /2) , 
CycPart (1) ; 

Vars : Smooth ( 0 )  , 
Detrender ( 0 )  , 
11 ( 0 )  I 
Q1 ( 0 )  , 
jI ( 0 )  I 
jQ(O), 
I2 (01,  
Q2 ( 0 )  I 
Re ( 0 )  , 
Im(O), 
Period ( 0 )  , 
Smoothperiod ( 0 )  I 
Length ( 0 )  , 
count ( 0 )  , 
MedianPrice ( 0 )  l 
Avg(O), 

cc1 ( 0 )  ; 

If CurrentBar > 5 then begin 
Smooth = (4*Price + 3*Price[l] + 2*Price [2] + 

Detrender = (.0962*Smooth + .5769*Smooth[2] - 
Price [3] ) / 10; 

.5769*Smooth [4] - .0962*Smooth [6] ) * 
( .075*Period [l] + .54) ; 

{Compute Inphase and Quadrature components} 
Q1 = (.0962*Detrender + .5769*Detrender [2] - 

.5769*Detrender [4] - .0962*Detrender [6] ) * 
( .075*Period [l] + .54) ; 

I1 = DetrenderL31 ; 

{Advance the phase of I1 and Q1 by 90 degrees} 
jI = (.0962*11 + .5769*11[2] - .5769*11[4] - 

jQ = (.0962*Q1 + .5769*Q1[2] - .5769*Q1[4] - 
.0962*11[61) * ( .075*Period [l] + .54) ; 

.0962*Q1[61) * ( .075*Period [l] + .54) ; 
(continued) 

Figure 22.3. EasyLanguage code to compute the  adaptive CCI. 
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{Phasor  addition  for 3 bar  averaging)} 
I2 = I1 - jQ; 
Q2 = Q1 + jI; 

{Smooth  the  I  and  Q  components  before  applying 
the  discriminator} 

I2 = .2*I2 + .8*12  [l] ; 

Q2 = .2*Q2 + .8*Q2  [l] ; 

{Homodyne  Discriminator} 
Re = I2*12  [l] + Q2*Q2  [l] ; 
Im = I2*Q2  [l] - Q2*12  [l] ; 
Re = .2*Re + .8*Re  [l] ; 
Im = .2*Im + .8*Im[l]; 
If  Im e >  0 and  Re c>  0 then  Period = 

If  Period > 1.5*Period[ll  then  Period = 

If  Period C .67*Period[ll  then  Period = 

If  Period C 6  then  Period = 6; 
If  Period 50 then  Period = 50; 
Period = .2*Period + .8*Period[ll; 
SmoothPeriod = .33*Period + .67*SmoothPeriod[l]; 

Length = IntPortion(CycPart*Period); 
MedianPrice = (High + Low + Close) / 3; 

For  count = 0 to  Length - 1 begin 

End ; 
Avg = Avg / Length; 
MD = 0; 
For  count = 0 to  Length - 1 begin 

3 6  O/ArcTangent ( Im/Re ; 

1. S*Period  [l] ; 

.67*Period  [l] ; 

Avg = 0; 

Avg = Avg + MedianPrice  [count] ; 

MD = MD + AbsValue(MedianPrice[count] - 
Avg) ; 

End ; 
MD = MD / Length; 
If MD C >  0 then  CC1 = (MedianPrice - Avg) / 

(O.OlS*MD) ; 

Plot1  (CCI,  "CCI" ) ; 
End ; 

Figure 22.3. (Continued). 



This Page Intentionally Left Blank



EPILOGUE: SPLASH DOWN 

At Lift Off,  we  said our goal  was to revolutionize the art of trad- 
ing by introducing the concept of modern digital  signal  process- 
ing. I hope  you  agree that this has led to  the development of some 
profoundly  effective new trading  tools.  More important, we hope 
that these new  trading tools have  given  you  a  new  perspective on 
how to view the market as well as how to technically analyze it. 

Rocket Science for nuders was written on  several  levels. At 
one level  you  have  been  given  cookbook  codes  for  trading 
systems with which you can begin  trading  immediately. The his- 
torical performance of these systems is on par,  or  exceeds, the 
performance of commercial systems that cost thousands of dol- 
lars.  At another level  you  have  genuinely new analysis  tools, 
such as the Homodyne  cycle  period  measurer, the Signal-to- 
Noise  Indicator, the Instantaneous Trendline, the Sinewave  Indi- 
cator,  and  more. These indicators view the market from entirely 
new  perspectives  and  therefore augment your existing tools. I 
invite you to read the book  again-perhaps more than once-and 
reach the highest level  possible. That level constitutes a  deep 
understanding of both the market and our analysis  processes. 

T h i s  book is by no  means the final  word  on  digital  signal  pro- 
cessing  as it applies to trading. For  example,  Ehlers filters  are 
engaged in a  continuing state of research,  evolution,  and  design. 
Through these efforts I hope to generate  more  accurate  models of 
the market that will  lead to even  greater  profits  for  traders. I encour- 
age  you to join me in this journey  and  boldly go where no trader  has 
gone  before. I look  forward to hearing  about  your  adventures in the 
market and invite you to share the new  horizons  you  reach. 
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FOR MORE INFORMATION 

Research is an ongoing  process  for  me. The  latest reports of my 
research  can  be  found in technical papers  and  Power Point sem- 
inars on my Internet  site www.mesasoftware.com. 

Users of Supercharts do not have a PowerEditor to write the 
EasyLanguage  code I have presented. Many users of Tradestation 
wish to avoid the work of coding and debugging the indicators, 
paintbars, and systems although they have the PowerEditor. For 
you to maximize the utility of this book,  you can purchase the 
EasyLanguage  Archive (ELA) files for direct transfer into your 
trading platform. You can purchase the ELA files from my web- 
site www.mesasoftware.com, or by contacting me at 

MESA Software 
P.O. Box 1801 
Goleta, CA 93 1 1 G 
(800) 633-6372 

Good  Trading! 
John F. Ehlers 
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GLOSSARY 

amplitude Half the peak-to-peak value of the signal. This is 
equal to  the length of the phasor. 

analytic  waveform The standard waveforms with which 
traders are familiar, like the price history of a stock. An ana- 
lytic waveform contains either positive frequencies or nega- 
tive frequencies, but  not both. 

angular  frequency Denoted by the Greek symbol omega (a). 
Angular  frequency = 2*n;*frequency. 

attenuate  To make the wave amplitude smaller. 
baseband The information band of frequencies falling between 

zero  frequency  and half the sampling frequency (the Nyquist 
frequency). 

Cycle  Mode Those times  when the market data are short-term 
coherent. During these times, effective trading can be done  by 
trading at  the cyclic turning points using oscillator-type indi- 
cators. 

decibel  Ten times the logarithm of a power ratio. Zero dB cor- 
responds to a unity power ratio because Log( 1)=0. Three dB 
corresponds to a power ratio of 2. The measure of -3 dB corre- 
sponds to a power ratio of 0.5. Six dB corresponds to a power 
ratio of 4. The measurement -6 dB corresponds to a power 
ratio of 0.25.  Ten dl3 corresponds to a power ratio of 10. 

detrend The process of removing static and slowly varying 
components from  price data, leaving the residual to be the 
cycle components. Detrending can be  done in a variety of 
ways, the most simple of which is to  take a momentum of the 
price. 
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direct  current Current flowing  from a battery, as opposed to 
alternating current, which flows  from wall plugs. Direct cur- 
rent has zero  frequency. Direct current  is analogous to  the 
constant part of market price. 

EasyLanguage Computer code  created by  Omega  Research  for 
traders to  write indicators and systems for Tradestation and 
SuperCharts. EasyLanguage is similar to Pascal with special 
keywords  for  trading. 

Ehlers filter A FIR filter whose  coefficients are ranked by a sta- 
tistic, but whose temporal location is retained. The coeffi- 
cients are normalized to  the  sum of the coefficients to ensure 
unity low-frequency  gain. The coefficients  may be nonlinear 
to support rapid and sustained price movements. 

Euler’s  Theorem Sine  and  cosine can be expressed as complex 
exponential functions. 

exponential  waveform The response of an Exponential Moving 
Average  (EMA) to an impulse excitation. The filter output de- 
cays  rapidly at first and maintains some finite  output forever. 

Finite  Impulse  Response (FIR) filter A type of filter that pro- 
vides an output only when an impulse is present within the 
filter window width. A Simple Moving  Average (SMA) is this 
type of filter. 

Hilbert  Transform A mathematical procedure that creates 
Inphase and Quadrature components as  complex numbers 
from the analytic waveform. 

Homodyne Using the product of a signal multiplied by itself. 
A Homodyne Discriminator results from the multiplication of 
a complex signal with  the complex  conjugate of that signal 
delayed  by one sample. 

imaginary  number A real number located on  the imaginary 
axis in  the complex  plane. 

Infinite  Impulse  Response ( I IR)  filter A type of filter that pro- 
vides an output forever after having an impulse applied to the 
input. This is because the output involves an iterative compu- 
tation using previous outputs as well as inputs. An Exponen- 
tial Moving  Average ( E M )  is this type of filter. 

Inphase  component The real part of the complex  variable  rep- 
resentation of the analytic waveform. The Inphase compo- 
nent is in phase with  the cycle part of the data. 
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instantaneous  phase Computed as the arctangent of the ratio 
of the Quadrature component to  the Inphase component. 

Instantaneous  Trendline The Instantaneous Trendline is cre- 
ated by removing the dominant cycle  signal component from 
the price data, with  the result being that  the residual is the 
trend component. The Instantaneous Trendline is computed 
by taking a simple average whose length is equal to  the meas- 
ured dominant cycle. 

Lead Sine An indicator line that leads the sine of the dominant 
cycle  by 45 degrees in phase. 

median  filter A filter whose output  is the median value of 
prices contained within the filter observation window. 

Nyquist  frequency  Half the sampling frequency. This  is  the 
highest frequency that can be assigned to  the baseband of 
sampled data without inducing aliasing. The Nyquist fre- 
quency for daily price data is 0.5 cycles per  day (a 2-bar 
cycle). 

Nyquist  sampling  criteria The sampled data must have at 
least two samples per cycle of the highest information fre- 
quency. 

Ohm’s  Law A basic law of electronics that says that voltage is 
equal to  the product of current time resistance. 

Order Statistic (OS) filter An OS filter is a filter that ranks the 
coefficients  by a  statistic rather than by temporal location 
within the filter. For example, a median filter (where the  out- 
put is  the median value of prices within the filter window) is 
an OS filter. 

passband The band of frequencies that are allowed to propa- 
gate through a filter with very little  attenuation. 

phasor  diagram A phasor is a two-dimensional vector whose 
tail  is attached to  the origin in a complex coordinate system. 
The phasor rotates with  the angular  frequency of the data 
cycle, and its length is equal to  the wave amplitude. 

power  Power is proportional to wave amplitude squared.  Power 
is invariant with phase  angle. 

Quadrature  component Quadrature means being at right 
angles. The Quadrature component of the complex  represen- 
tation of the analytic waveform  leads the Inphase component 
by 90 degrees. 
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rotational  operator The operator is j = f i .  This operator 
rotates a real number by 90 degrees,  for  example  from the real 
axis to  the imaginary axis. 

sideband An information band of frequencies heterodyned 
onto the sampling frequency  or a harmonic of the sampling 
frequency. 

Signal-to-Noise  Ratio  For trading purposes, noise is defined  as 
the average  range  from high to low of the price  bars.  Signal-to- 
Noise Ratio is the power ratio of the wave amplitude to  the 
noise. 

SineTrend  Automatic  Trading  System An automatic trading 
system that changes rules according to  the determined market 
mode. 

stopband The band of frequencies that are rejected or heavily 
attenuated by a filter. 

subordinate cycle A calculation failure mode arising from 
rounding  errors in iterative calculations. 

transfer  response The characteristic of a filter. The description 
of the way a filter processes input data to provide the filtered 
output. 

Trend  Mode Those times in  the market when tradable  cycles 
are not present. Trend  Mode trading involves  trend-following 
indicators, such as moving  averages. 

unity  Having a value of 1. 
wave  amplitude  Half the peak-to-peak value of the signal. This 

zero  frequency The cycle  period is infinitely long. Direct cur- 

Z Transform A tool for  algebraic solution of discrete system 

is equal to the length of the phasor. 

rent has zero  frequency. 

problems. 
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