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This article provides an elementary introduction to Gaussian channels and their capacities.
We review results on the classical, quantum, and entanglement assisted capacities and dis-
cuss related entropic quantities as well as additivity issues. Some of the known results are
extended. In particular, it is shown that the quantum conditional entropy is maximized by
Gaussian states and that some implications for additivity problems can be extended to the
Gaussian setting.
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1 Introduction

Any physical operation that reflects the time evolution of the state of a quantum system can
be regarded as a channel. In particular, quantum channels grasp the way how quantum states
are modified when subjected to noisy quantum communication lines. Couplings to other
external degrees of freedom, often beyond detailed control, will typically lead to losses and
decoherence, effects that are modelled by appropriate non-unitary quantum channels.

Gaussian quantum channels play a quite central role indeed.After all, good models for the
transmission of light through fibers are provided by Gaussian channels. This is no accident:
linear couplings of bosonic systems to other bosonic systems with quadratic Hamiltonians
can in fact appropriately be said to be ubiquitous in physics. In this optical context then,
the time evolution of the modes of interest, disregarding the modes beyond control, is then
reflected by a Gaussian bosonic channel. Random classical noise, introduced by Gaussian
random displacements in phase space, gives also rise to a Gaussian quantum channel, as well
as losses that can be modelled as a beam splitter like interaction with the vacuum or a thermal
mode.

This article provides a brief introduction into the theory of Gaussian quantum channels.1

After setting the notation and introducing to the elementary concepts, we provide a number of
practically relevant examples. Emphasis will later be put on questions concerning capacities:
Capacities come in several flavours, and essentially quantify the usefulness of a quantum
channel for the transmission of classical or quantum information. We will briefly highlight
several major results that have been achieved in this field. Finally, we discuss a number of
open questions, notably related to the intriguing but interesting and fundamental questions of
additivities of quantum channel capacities.

2 Gaussian channels

In mathematical terms aquantum channelis a completely positive trace-preserving map
ρ 7−→ T (ρ) that takes states, i.e., density operatorsρ acting on some Hilbert spaceH, into
states2. For simplicity we will always assume that output and input Hilbert spaces are identi-
cal. Every channel can be conceived as reduction of a unitaryevolution in a larger quantum
system. So for any channelT there exists a stateρE on a Hilbert spaceHE , and a unitaryU
such that

T (ρ) = trE [U(ρ⊗ ρE)U †]. (1)

The system labeledE serves as an environment, embodying degrees of freedom of which
elude the actual observation, inducing a decoherence process. The channel is then a local

1This is a review article. Previously unpublished material is presented in Section 3.3 and in Section 5.4.
2This expression refers to the Schrödinger picture of quantum channels. Equivalently, one can define the dual

linear mapT ∗ in the Heisenberg picture via tr[ρT ∗(A)] = tr[T (ρ)A], which in turn is then completely positive and
unital.
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manifestation of the unitary evolution of the joint system.A Gaussian channel[1, 2, 3, 4, 5]
is now a channel of the form as in Eq. (1), whereU is a Gaussian unitary, determined by a
quadratic bosonic Hamiltonian, andρE is a Gaussian state [6]. In many cases, of which the
lossy optical fiber is the most prominent one, this restriction to quadratic Hamiltonians gives
a pretty good description of the physical system. Note that although the channel is assumed
to be Gausssian in the entire article, the input states are not necessarily taken to be Gaussian.

2.1 Preliminaries

It seems appropriate for the following purposes to briefly fixthe notation concerning Gaus-
sian states and their transformations [5, 6, 7, 8]. For a quantum system withn modes,
i.e., n canonical degrees of freedom, thecanonical coordinateswill be denoted asR =
(x1, p1, ..., xn, pn). Most naturally, these operators can be conceived as corresponding to
field quadratures. Although all statements in this article hold true for any physical system
having canonical coordinates, we will often refer to the optical context when intuitively de-
scribing the action of a channel. The creation and annihilation operators are related to these
canonical coordinates according toxi = (ai + a†i )/

√
2 andpi = −i(ai − a†i )/

√
2. The

coordinates satisfy the canonical commutation relations,which can be expressed in terms of
theWeyl operatorsor displacement operatorsWξ = eiξT σR with ξ ∈ R2n:

W †
ξWξ′ = Wξ′W †

ξ e
iξT σξ′

, σ =

n
⊕

i=1

(

0 1
−1 0

)

, (2)

where we have set̄h = 1. The matrixσ defines the symplectic scalar product, simply indi-
cating that position and momentum of the same mode do not commute.

The Fourier transform of the ordinary Wigner function in phase spaceR2n is thecharac-
teristic function

χρ(ξ) = tr[ρWξ], (3)

from which the state can be reobtained asρ =
∫

d2nξ χρ(ξ)W
†
ξ /(2π)n. Gaussian states

are exactly those having a Gaussian characteristic function, and therefore a Gaussian Wigner
function in phase space:

χρ(ξ) = e−ξT Γξ/4+DT ξ. (4)

Here, the2n × 2n-matrix Γ and the vectorD ∈ R2n are essentially the first and second
moments: they are related to the covariance matrixγ and the displacementsd asΓ = σT γσ
andD = σd. This choice is then consistent with the definition of thecovariance matrixas
having entriesγj,k = 2Re

〈

(Rj−dj)(Rk−dk)
〉

ρ
, j, k = 1, ...., 2n, with dj = tr[Rjρ]. States

always satisfy the Heisenberg uncertainty principle, which can be expressed asγ + iσ ≥ 0.
This is a simple semi-definite constraint onto any matrix of second moments, also obeyed by
every non-Gaussian state.

2.2 General Gaussian channels

The simplest Gaussian channel is a lossless unitary evolution, governed by a quadratic bosonic
Hamiltonian:

ρ 7−→ UρU †, U = e
i
2

∑

k,l HklRkRl , (5)
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with H being a real and symmetric2n × 2n matrix. Such unitaries correspond to a repre-
sentation of the real symplectic groupSp(2n,R), formed by those real matrices for which
SσST = σ [7, 8, 9]. These are exactly the linear transformations which preserve the com-
mutation relations. The relation between such acanonicaltransformation in phase space and
the corresponding unitary in Hilbert space is given byS = eHσ. Needless to say, Gaussian
unitaries are ubiquitous in physics, in particular in optics, and this is the reason why Gaus-
sian channels play such an important role. Notably, the action of ideal beam splitters, phase
shifters, and squeezers correspond to symplectic transformations.3

It is often instructive to consider transformations on the level of Weyl operators in the
Heisenberg picture. For a symplectic transformation we haveWξ 7−→WS−1ξ. The action of
ageneral Gaussian channelρ 7−→ T (ρ) can be phrased as

Wξ 7−→WXξ e
− 1

2
ξT Y ξ, (6)

whereX,Y are real2n× 2n-matrices [1, 5, 7]. Additional linear terms in the quadratic form
are omitted since they merely result in displacements in phase space, which are not interesting
for later purpose. Not any transformation of the above form is possible: complete positivity
of the channel dictates that4

Y + iσ − iXTσX ≥ 0. (7)

Depending on the context it may be more appropriate or transparent to formulate a Gaussian
channel in the Schrödinger pictureρ 7−→ TX,Y (ρ) or to define it as a transformation of
covariance matrices

γ 7−→ XTγX + Y. (8)

This is the most general form of a Gaussian channel. Roughly speakingX serves the pur-
pose of amplification or attenuation and rotation in phase space, whereas theY contribution
is a noise term which may consist of quantum (required to makethe map physical) as well as
classical noise. Interestingly,X may be any real matrix, and hence, any mapγ 7−→ XTγX
can be approximately realized, as long as ’sufficient noise’is added. In this language, it
also becomes immediately apparent how much noise will be introduced by any physical de-
vice approximating amplification or time reversal, meaningphase conjugation in an optical
context. For second moments far away from minimal uncertainty, this additional noise may
hardly have an impact (so classical fields can be phase conjugated after all), whereas close to
minimal uncertainty this is not so any longer.

2.3 Important examples of Gaussian channels

The practically most important Gaussian channel is probably an idealized action of a fiber.
Moreover, as mentioned earlier, any situation where a quadratic coupling to a Gaussian en-
vironment provides a good description can be cast into the form of a Gaussian channel. We
will in the following consider a number of important specialcases of Gaussian channels for
single modes:

3Any suchS can be decomposed into asqueezing component, and apassive operation[9]. So one may write
S = V ZW , with V, W ∈ K(n) = Sp(2n,R) ∩ SO(2n) are orthogonal symplectic transformations, forming
the subgroup of passive, i.e., number-preserving, operations. In turn,Z = diag (z1, 1/z1, . . . , zn, 1/zn) with
z1, ..., zn ∈ R\{0} are local single-mode squeezings.

4The case of a single mode is particularly transparent. Then,mixedness can be expressed entirely in terms of
determinants, and hence, the above requirement can be cast into the formY ≥ 0, anddet[Y ] ≥ (det[X] − 1)2 .
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1. Theclassical noise channelmerely adds classical Gaussian noise to a quantum state,
i.e., X = 1, Y ≥ 0 [3, 10, 11, 12]. In Schrödinger picture this channel can be
represented by a random displacement according to a classical Gaussian probability
distribution:

T (ρ) =
1

4π
√

detY

∫

d2ξ WξρW
†
ξ e

− 1

4
ξT Y −1ξ . (9)

2. In thethermal noise channel[3, 11] a mode passively interacts with another mode in a
thermal state,ρ 7−→ T (ρ) = trE [Uη(ρ⊗ ρE)U †

η ]. The result is as if the mode had been
coupled in with a beam splitter of some transmittivityη.5 For the second moments, we
have that

γ 7−→ [Sη(γ ⊕ c12)S
T
η ]E , (10)

wherec12, c ≥ 1, is the covariance matrix of a thermalGibbs state

ρE =
2

c+ 1

∞
∑

n=0

(

c− 1

c+ 1

)n

|n〉〈n| (11)

with mean photon number(c − 1)/2. [.]E denotes the leading2 × 2 submatrix. The
passive symplectic transformationSη is given by

Sη =

[ √
η 12

√
1 − η 12

−√
1 − η 12

√
η 12

]

, η ∈ [0, 1]. (12)

So we obtain
γ 7−→ ηγ + (1 − η)c12. (13)

3. Thelossy channelis obtained by settingc = 1 in Eq(13). It reflects photon loss with
probability1 − η. This channel is the prototype for optical communication through a
lossy fiber, since thermal photons (leading to a contribution c > 1) are negligible at
room temperature. When using an optical fiber of lengthl andabsorbtion lengthlA we
may setη = e−l/lA . The lossy channel withX =

√
η12, Y = (1− η)12 is also called

attenuation channel[3].

4. Theamplification channel[3] is of the form

X =
√
η12, Y = (η − 1)12, η ∈ (1,∞) . (14)

Here, the termY is a consequence of the noise that is added due to Heisenberg un-
certainty. Note that a classical noise channel can be recovered as a concatenation of a
lossy channel, followed by an amplification.

All these examples correspond to a single mode characterized by a fixed frequencyω.
This is often referred to as the narrowband case as opposed tobroadband channels[13, 14,
15], which consist out of many uncoupled single-mode channels, each of which corresponds
to a certain frequencyωi, i = 1, 2, ... . Best studied is the simple homogeneous case of a
lossy broadband channel (equally spaced frequenciesωi, with equal transmittivityη in all the
modes).

5In the Heisenberg picture this means that the annihilation operator transforms asa 7→ √
η a+

√
1 − η b, where

b is the annihilation operator of the ancillary mode.
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It shall finally be mentioned that the very extensive literature on harmonic open quantum
systems is essentially concerned with Gaussian channels ofa specific kind, yet one where the
environment consists of infinitely many modes, where the linear coupling is characterized by
some spectral density.

3 Entropies and quantum mutual information

3.1 Output entropies

Channels describing the physical transmission of quantum states typically introduce noise to
the states as a consequence of a decoherence process. Pure inputs are generally transformed
into mixed outputs, so into statesρ having a positive von-Neumann entropy

S(ρ) = −tr[ρ log ρ]. (15)

The entropy of the output will clearly depend on the input andthe channel itself, and the mini-
mal such entropy can be taken as a characteristic feature of the quantum channel. Introducing
more generally theα Renyi entropiesfor α ≥ 0 as

Sα(ρ) =
1

1 − α
log tr[ρα] (16)

thisminimal output entropy[16] is then defined as6

να(T ) = inf
ρ

(Sα ◦ T )(ρ). (17)

The Renyi entropies [17] are derived from theα-norms of the state,‖ρ‖α = tr[ρα]1/α. In case
of the limit limαց1 one retains the von-Neumann entropy, i.e.,limαց1 Sα(ρ) = S(ρ); for
α = 2, this is thepurity in the closer sense. Roughly speaking, the smaller the minimal output
entropy, the less decohering is the channel (see, e.g., Ref.[18]). The actual significance of
this quantity yet originates from its intimate relationship concerning questions of capacities.
This will be elaborated on in the subsequent section.

3.2 Mutual information and coherent information

In Shannon’s seminal channel coding theorem the capacity ofa classical channel is expressed
in terms of the classical mutual information [20]. In fact, as we will see below, the quantum
analogue of this quantity plays a similar role in quantum information theory. For any quantum
channelT and any quantum stateρ acting on a Hilbert spaceH, one defines thequantum
mutual informationI(ρ, T ) as

I(ρ, T ) = S(ρ) + (S ◦ T )(ρ) − S(ρ, T ), (18)

whereS(ρ, T ) = (1 ⊗ T )(|ψ〉〈ψ|) and |ψ〉 ∈ HD ⊗ H is any purification of the state
ρ = trD[|ψ〉〈ψ|] [3, 19]. It is not difficult to see thatI(ρ, T ) does not depend on the chosen
purification. The quantum mutual information has many desirable properties: it is positive,
concave with respect toρ, and additive with respect to quantum channels of the formT⊗n.

6We use the notation(S ◦ T )(ρ) = S
(

T (ρ)
)

.
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The latter property comes in very handy when relating this quantity to the entanglement-
assisted classical capacity. An important part of the quantum mutual information is theco-
herent informationgiven by

J(ρ, T ) = (S ◦ T )(ρ) − S(ρ, T ). (19)

J(ρ, T ) can be positive as well as negative, it is convex with respectto T but its convexity
properties with respect toρ are unclear.

3.3 Entropies of Gaussian states and extremal properties

When maximizing the rate at which information can be sent through a Gaussian channel,
Gaussian states play an important role. In fact, in many cases it turns out that encoding the
information into Gaussian states leads to the highest transmission rates. This is mainly due
to the fact that for a given covariance matrix many entropic quantities take on their extremal
values for Gaussian states. These entropic quantities, andin fact any unitarily invariant func-
tional, can for Gaussian states immediately be read off the symplectic spectrum of the covari-
ance matrix: any covariance matrixγ of n modes can be brought to theWilliamson normal
form [21], γ 7−→ SγST = diag(c1, c1, c2, c2, ..., cn, cn) with an appropriateS ∈ Sp(2n,R),
and{ci : i = 1, ..., n} being the positive part of the spectrum ofiσγ. This is nothing but the
familiar normal mode decomposition with theci corresponding to the normal mode frequen-
cies. Then, the problem of evaluating any of the above quantities is reduced to a single-mode
problem. For example, the von-Neumann entropy is given by [2]

S(ρ) =

n
∑

i=1

g
(ci − 1

2

)

, (20)

whereg(N) = (N+1) log(N+1)−N logN is the entropy of a thermal Gaussian state with
average photon numberN . Similar expressions can be found for the other entropic quantities.

Consider now any statẽρ which has the same first and second moments as its Gaussian
counterpartρ. Then

S(ρ) − S(ρ̃) = S(ρ̃, ρ) + tr
[

(ρ̃− ρ) log ρ
]

, (21)

where the first term is the nonnegative relative entropy, andthe second term vanishes since the
expectation value of the operatorln ρ depends only on the first and second moments. Hence,
the Gaussian state has the largest entropy among all states with a given covariance matrix7

[2]. A more sophisticated argument, using ideas of convex optimization and the theorem of
Kuhn and Tucker, shows that the same holds true for the quantum mutual information [3]:
For any Gaussian channelT and fixed first and second moments ofρ, the respective Gaussian
state maximizesI(ρ, T ). Whether a similar statement also holds for the coherent information
is not known.

Another very useful quantity that takes its extremal valueson Gaussian states, we would
like to mention at this point, is thequantum conditional entropy[22], defined as

S(ρ : A|B) = S(ρ) − S(ρA) (22)
7The fact, that Gaussian states maximize the entropy has far reaching consequences: (i) it is an essential ingre-

dient in showing that Gaussian input states achieve the classical capacity for a lossy channel, (ii) it immediately
implies that bipartite states that contain the largest amount of entanglement under an energy constraint are Gaussian,
and (iii) it implies that the entropy of a Gaussian state is concave as a function of the covariance matrix.
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in a bi-partite system with partsA andB. HereρA is the reduction with respect to system
A. It can be shown in a very similar fashion as before that this quantity is maximized on
Gaussian states for fixed second moments, although we now encounter a difference between
two von-Neumann entropies. Letρ̃ again be a state with the same first and second moments
as its Gaussian counterpartρ, then

S(ρ : A|B) − S(ρ̃ : A|B) = S(ρ) − S(ρA) − S(ρ̃) + S(ρ̃A)

= S(ρ̃||ρ) − S(ρ̃A||ρA)

+ tr[(ρ̃− ρ) log ρ] − tr[(ρ̃A − ρA) log ρA] ≥ 0. (23)

In the last inequality, it is used that the relative entropy can only decrease under joint ap-
plication of completely positive maps. This extremal property is helpful when assessing for
example achievable rates in state merging [22], for which the quantum conditional entropy is
an upper bound. More importantly in the Gaussian setting, the negative of the conditional en-
tropy is a lower bound [23] to thedistillable entanglement[24], which can be used to detect
distillable entanglement in quantum states by measuring second moments only. Whenever
one performs a measurement of second moments (estimation ofthe variances of the quadra-
tures) of an unknown statẽρ and finds that its Gaussian counterpart satisfies

−S(ρ : A|B) = S(ρA) − S(ρ) > 0, (24)

then one can argue that this is in turn a lower bound for the distillable entanglementED(ρ̃)
of ρ̃. In this way, one can infer about the distillable entanglement of an unknown quantum
state

ED(ρ̃) ≥ S(ρA) − S(ρ), (25)

without having to assume that the quantum state is Gaussian.This is relevant as any knowl-
edge whether a state is Gaussian is typically not accessiblewithout complete state tomog-
raphy. Moreover, this bound is robust against small perturbations, which is also practically
important since even complete state tomography will determine the state only up to some
error.

3.4 Constrained quantities

There are essentially two subtleties [25, 26] that arise in the infinite-dimensional context as
we encounter it here for Gaussian quantum channels: on the one hand, there is the necessity
of natural input constraints, such as one of finite mean energy. Otherwise, the capacities
diverge. On the other hand, there is the possibility of continuous state ensembles8. The
need for a constraint is already obvious when considering the von-Neumann entropy: On
a state space over an infinite dimensional Hilbert space, thevon-Neumann entropy is not
(trace-norm) continuous, but only lower semi-continuous9, and almost everywhere infinite.

This problem can be tamed by introducing an appropriate constraint. For our purposes,
we may take the HamiltonianH =

∑n
i=1(x

2
i + p2

i )/2. Then, instead of taking all states into
account, one may consider the subset

K = {ρ : tr[ρH ] < h}. (26)
8This is understood as taking into account probability measures on the set of quantum states. For an approach in

the language of probability and operator theory, see Ref. [25].
9This means that if, for a stateρ, {ρn} is a sequence of states for whichρn → ρ in trace-norm asn → ∞, then

S(ρ) ≤ lim infn→∞ S(ρn).
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introducing for someh > 0 a constraint on the mean energy10 or mean photon numberN =
h − 1/2. Similarly, for tensor products we considerK⊗n = {ρ : tr[ρH⊗n] < nh}. On this
very natural subsetK the von-Neumann entropy and the classical information capacity retain
their continuity. In fact, many entanglement measures alsoretain the continuity properties
familiar in the finite-dimensional context, such that, e.g., the entropy of a subsystem for pure
states can indeed be interpreted as the distillable entanglement [27].

4 Capacities

In classical information theory a single number describes how much information can reliably
be sent through a channel: itscapacity. In quantum information theory the situation is more
complicated and each channel is characterized by a number ofdifferent capacities [28]. More
precisely, which capacity is the relevant one depends on whether we want to transmit classical
or quantum information, and on the resources and protocols we allow for. An important
resource that we must consider is entanglement shared between sender and receiver. The
presence or absence of this resource together with the question about sending classical or
quantum information leads to four basic capacities, which we will discuss in the following.

4.1 Classical information capacity

Theclassical information capacityis the asymptotically achievable number of classical bits
that can be reliably transmitted from a sender to a receiver per use of the channel. Here, it
is assumed that the parties may coherently encode and decodethe information in the sense
that they may use entangled states as codewords at the input and joint measurements over
arbitrary channel uses at the output. This answers essentially the question of how useful a
quantum channel is for the transmission of classical information.

This capacity is derived from the single-shot expression [29, 30], appropriately con-
strained as above,

C1(T,K) = sup

[

S
(

∑

i

piT (ρi)
)

−
∑

i

pi(S ◦ T )(ρi)

]

, (27)

where the supremum is taken over all probability distributions and sets of states satisfyingρ =
∑

i piρi under the constraintρ ∈ K [25, 26] 11. By the Holevo-Schumacher-Westmoreland
(HSW) theorem [29, 30], this single-shot expression gives the capacity if the encoding is
restricted to product states. Hence, the full classical information capacity can formally be
expressed as the regularization ofC1,

C(T,K) = lim
n→∞

1

n
C1(T

⊗n,K⊗n). (28)

10More general constraints than this one can be considered, leading tocompact subsets of state spaceon which
one retains continuity properties in particular for the von-Neumann entropy and the classical information capacity
[17, 25, 26, 27]. Essentially, any unbounded positive operator H with a spectrum without limiting points would also
be appropriate, such that trexp[−βH] < ∞ for all β > 0.

11The above constraint also ensures that(S ◦ T )(ρ) < ∞. The convex hull function ofS ◦ T , given byρ 7−→
Ŝ(ρ, T ) = inf

∑

i pi(S ◦ T )(ρi) in Eq. (27), with the infimum being taken over all ensembles with
∑

i piρi = ρ,
is still convex in the unconstrained case, but no longer continuous, however, lower semi-continuous in the above
sense.
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Clearly,C(T,K) ≥ C1(T,K) since the latter does not allow for inputs which are entangled
over several instances of the channel. Yet, it is in general not known whether this possi-
bility comes along with any advantage at all, so whether entangled inputs facilitate a better
information transfer. This will be remarked on later.

Note that in this infinite-dimensional setting, the constraint is required to obtain a mean-
ingful expression for the capacity: for all non-trivial Gaussian channels the optimization over
all input ensembles in Eq. (27) would lead to an infinite capacity. This can simply be achieved
by encoding the information into phase space translates of any signal state. Then no matter
how much noise is induced by the channel, we can always choosethe spacing between the
different signal states sufficiently large such that they can be distinguished nearly perfectly at
the output.

Let us now follow the lines of Ref. [31] and sketch the derivation of the classical capacity
for lossy channels. First of all, a lower bound onC(T,K) can be obtained by choosing an
explicit input ensemble for Eq. (27). Random coding over coherent states according to a
classical Gaussian probability distribution leads to an average input state of the form

ρ ∝
∫

d2ξ Wξ|0〉〈0|W †
ξ e

− 1

4
ξT V −1ξ , (29)

with covariance matrixγ = 1 + V . Hence, if we chooseV = 2N1, the average number
of photons in the input state will betr [ρa†a] = N . The constraint setK hence corresponds
to the choice ofh = N + 1/2. After passing a lossy channel with transmittivityη this
changes totr [T (ρ)a†a] = ηN , and sinceT (ρ) is a thermal state, its entropy is given by
(S ◦ T )(ρ) = g(ηN). The action of a lossy channel on a coherent input state is to shift
the state by a factorη towards the origin in phase space. In other words, the channel maps
coherent states onto coherent states and since the latter have zero entropy, we have [3]

C1(T,K) ≥ (S ◦ T )(ρ) = g(ηN). (30)

Assume now that̃ρ is the average input state optimizingC1(T
⊗n,K⊗n) under a given

constraint for the mean energy as described above. Then

C1(T
⊗n,K⊗n) ≤ (S ◦ T⊗n)(ρ̃) ≤

n
∑

i=1

(S ◦ T )(ρ̃i) , (31)

whereρ̃i is the reduction of̃ρ to thei-th mode and the second inequality is due to the subaddi-
tivity of the von-Neumann entropy. Since for a fixed average photon numbertr [ρ̃ia

†a] = Ni

the entropy is maximized by a Gaussian state, we have in addition that(S ◦T )(ρ̃i) ≤ g(ηNi).
Together with the lower bound this implies that the classical capacity of a lossy channel is

indeed given byC(T,K) = g(ηN) [31], if the average number of input photons per channel
use is restricted to be not larger thanN , corresponding to the constrained associated withK.
Hence random coding over coherent states turns out to be optimal and neither non-classical
signal states nor entanglement is required in the encoding step.12

An immediate consequence of this result is that the classical capacity of the homogeneous
broadband channelT is given by

C(T,K) = t

√
η

ln 2

√

πP

3
+ O(1/t) , (32)

12Of course, there might also be optimal encodings which do exploit a number state alphabet or entanglement
between successive channel uses.
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whereP is the average input power andt is the transmission time related to the frequency
spacingδω = 2π/t. For the lossless caseη = 1 this capacity was derived in Ref. [15, 32].

4.2 Quantum capacities

The quantum capacityis the rate at which qubits can be reliably transmitted through the
channel from a sender to a receiver. This transmission is done again employing appropriate
encodings and decodings before envoking instances of the quantum channel [3]. This capac-
ity can be made precise using thenorm of complete boundedness13. The question is how
well the identity channel can be approximated in this norm. More specifically [33], the quan-
tum capacityQ is the supremum ofc ≥ 0 such that for allε, δ > 0 there existn,m ∈ N,
decodingsTD and encodingsTE with

∣

∣

∣

n

m
− c

∣

∣

∣
< δ,

∥

∥Id⊗n
2 − TDT

⊗mTE

∥

∥

cb
< ε. (33)

One may also consider a weaker instance, allowing forε-errors, and then look at aQε-
capacity [3]. It is known that the quantum capacity does not increase if we allow for additional
classical forward communication [34].

In Ref. [35] it was proven that the quantum capacityQ(T ) can be expressed in terms of
the coherent information as

Q(T ) = lim
n→∞

1

n
sup

ρ
J
(

ρ, T⊗n
)

. (34)

Unfortunately, the asymptotic regularization is requiredin general, since the supremum over
the coherent information is known to be not additive14. However, the single-shot quantity
supρ J(ρ, T ) already gives a useful lower bound onQ(T ). For the classical noise Gaussian
channel and Gaussianρ this was first shown to be attainable in Ref. [10], based on earlier work
[37], using methods of quantum stabilizer codes that embed afinite-dimensional protected
code space in an infinite-dimensional one. For more general thermal noise channels, this is
given by [3]

J(ρ, T ) = g(N ′) − g

(

D +N ′ −N − 1

2

)

− g

(

D −N ′ +N − 1

2

)

, (35)

D =
√

(N +N ′ + 1)2 − 4ηN(N + 1) , (36)

whereN ′ = ηN + (1 − η)(c − 1)/2 is the average photon number at the channel output.
In fact, the same bound holds for the amplification channel, for which η > 1 andN ′ =
ηN + (η − 1)(c+ 1)/2. For broadband channels, lower bounds of this kind on the quantum
capacity were discussed in Ref. [13].

A computable upper bound on the quantum capacity of any channel is given byQ(T ) ≤
log ||Tθ||cb [3]. For finite-dimensional systemsθ is the matrix transposition, which corre-
sponds to the momentum-reversal operation in the continuous variables case. This bound

13This is defined as||T ||cb = supn ||Idn ⊗ T ||, where||T || = supX ||T (X)||1/||X||1.
14Note also that while the subtleties in the infinite-dimensional context have been fleshed out and precisely clar-

ified for the classical information capacity [25, 26], the entanglement-assisted capacity [36], and measures of en-
tanglement [27, 26], questions of continuity related to thequantum capacity are to our knowledge still awaiting a
rigorous formulation.
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is zero forentanglement breakingchannels15 and additive for tensor products of channels.
For attenuation and amplification channels with classical noise, i.e., channels acting asγ 7→
ηγ + |1 − η|c, this leads to [3]

Q(T ) ≤ log(1 + η) − log |1 − η| − log c . (37)

Note that this bound is finite for allη 6= 1. This is remarkable since it does not depend on the
input energy. That is, unlike the classical capacity, the unconstrained quantum capacity does
typically not diverge. Moreover, it is even zero in the caseη ≤ 1/2, since then the no-cloning
theorem forbids an asymptotic error-free transmission of quantum information.

4.3 Entanglement-assisted capacities

Needless to say, in a quantum information context, it is meaningful to see what rates can be
achieved for the transfer of classical information when entanglement is present. This is the
kind of information transfer considered in theentanglement-assisted classical capacityCE

[38, 36]. It is defined as the rate at which bits that can be transmitted in a reliable manner
in the presence of an unlimited amount of prior entanglementshared between the sender and
the receiver. In just the same manner, theentanglement-assisted quantum capacityQE may
be defined [36, 13, 14]. Similarly, this quantifies the rate atwhich qubits can asymptotically
be reliably transmitted per channel use, again in the presence of unlimited entanglement.
Exploiting teleportation and dense coding is not difficult to see that2QE = CE . Now, the
entanglement-assisted capacityCE is intimately related to the quantum mutual information,
as just the supremum of this quantity with respect to all statesρ ∈ K as in Eq. (26)

CE(T,K) = sup
ρ
I(ρ, T ). (38)

Again, with this constraint [36], the quantity regains the appropriate continuity properties16.
Note that in this case, no asymptotic version has to be considered, and due to the additivity
of the quantum mutual information the single-shot expression already provides the capacity.

In a sense Eq. (38) is the direct analogue of Shannon’s classical coding theorem. The
latter states that the classical capacity of a classical channel is given by the maximum mutual
information. The main difference is, however, that in the classical case shared randomness
does not increase the capacity, whereas for quantum channels shared entanglement typically
increases the capacity,

C(T,K) ≤ CE(T,K). (39)

Again, similar to the classical caseCE is conjectured to characterize equivalence classes of
channels within which all channels can efficiently simulateone another [38].

For Gaussian channels the extremal property of Gaussian states with respect to the quan-
tum mutual information allows us to calculateCE(T,K) by only maximizing over con-
strained Gaussian statesρ. For attenuation channels with classical noise, i.e.,γ 7→ ηγ +
(1 − η)c with 0 ≤ η ≤ 1, it was shown in Ref. [3] that

CE(T,K) = g(N) + J(ρ, T ) , (40)

with the coherent informationJ(ρ, T ) taken from Eq. (35). For the homogeneous broadband
lossy channel, extensively discussed in Ref. [13, 14], it holds again thatCE(T,K) ∝ t

√
P .

15A channel is called entanglement breaking if it correspondsto a measure and repreparation scheme.
16In a more general formulation – i.e., for non-Gaussian constrained channels, or for Gaussian channels with

different constraints – one has to require thatsupρ∈K(S ◦ T )(ρ) < ∞ [36].
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5 Additivity issues

In the previous sections, we have encountered additivity problems of several quantities related
to quantum channels. Such questions are at the core of quantum information theory: essen-
tially, the questions is whether for product channels one can potentially gain from utilizing
entangled inputs. This applies in particular to the additivity of the single-shot expressionC1

and the minimal output entropy17 [16]. A number of partial results on additivity problems
have been found. Yet, a conclusive answer to the most centraladditivity questions is still
lacking. In particular, it is one of the indeed intriguing open questions of quantum infor-
mation science whether the single-shot expressionC1 in Eq. (27) is already identical to the
classical information capacity as it is true for the case of the lossy channel [31].

5.1 Equivalence of additivity problems

Interestingly, a number of additivity questions are related in the sense that they are either
all true or all false. This connection is particularly well-established in the finite-dimensional
context [39, 40, 41]: then, the equivalence of the (i) additivity of the minimum output1-
entropy, the von-Neumann entropy, (ii) the additivity of the single-shot expressionC1, (iii)
the additivity of the entanglement of formation, and (iv) the strong superadditivity of the
entanglement of formation have been shown to be equivalent [39, 40, 41]. This equivalence,
besides being an interesting result in its own right, provides convenient starting points for
general studies on additivity, as in particular the minimaloutput entropies appear much more
accessible than the classical information capacity.

In the infinite-dimensional context, the argument concerning equivalence is somewhat
burdened with technicalities. We will here state the main part of an equivalence theorem of
additivity questions concerning any pairT1, T2 of Gaussian channels [26]. The following
properties (1.) and (2.) are equivalent and imply (3.):

(1.) For any stateρ on the product Hilbert space and for all appropriately constraint setsK1

andK2 we have that18

C1(T1 ⊗ T2,K1 ⊗K2) = C1(T1,K1) + C1(T2,K2). (41)

(2.) For any stateρ with (S ◦ T1)(tr2[ρ]) <∞ and(S ◦ T2)(tr1[ρ]) <∞

Ŝ(ρ, T1 ⊗ T2) ≥ Ŝ(tr2[ρ], T1) + Ŝ(tr1[ρ], T2), (42)

where for a channelT and
∑

i piρi = ρ

Ŝ(ρ, T ) = inf
∑

i

pi(S ◦ T )(ρi). (43)

17In the context of entanglement measures, additivity refersto the property that for a number of uncorrelated
bi-partite systems, the degrees of entanglement simply addup to the total entanglement.

18This has to hold for all compact subsetsK1 andK2 of state space for which(S ◦ Ti)(ρ) < ∞ for all states
ρ ∈ Ki, i = 1, 2, and such thatC1(T1,K1), C1(T2,K2) < ∞. Note that these assumptions are in particular
satisfied ifK1 andK2 are defined by an energy constraint.
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(3.) For the minimal output entropies

ν̄1(T1 ⊗ T2) = ν1(T1) + ν1(T2) (44)

where the bar indicates that in order to evaluate the minimaloutput entropy ofT1⊗T2,
the infimum is taken only over all pure statesρ such thatS(tr2[ρ]) = S(tr1[ρ]) < ∞
and(S ◦ (T1 ⊗ T2))(ρ) <∞.

In particular, this means that once a general answer to (1.) or (2.) was known for Gaus-
sian channels, a general single-shot expression for the classical information capacity of such
channels would be available, solving a long-standing open question. Moreover, it was proven
that the above implications hold true if one of the additivity conjectures is proven for the
general finite dimensional case [26].

5.2 Integer output entropies

For specific channels, the unconstrained minimal outputα-entropies for tensor products can
be identified for integerα. Theseinteger instances of output puritiesare not immediately
related to the question of the classical information capacity, for which the limitα ց 1 is
needed. However, they provide a strong indication of additivity also in the general case.
Notably, for the single-mode classical and thermal noise channelsT ,

να(T⊗n) = nνα(T ) (45)

has been established for integerα [11]. The concept of entrywise positive maps also provides
a general framework for assessing integer minimal output entropies for Gaussian channels
[45], generalizing previous results. It is worth mentioning that in the above cases the minimal
output entropyνα(T ), 2 ≤ α ∈ N is attained for Gaussian input states [11].

5.3 Output entropies for Gaussian inputs

In all known cases Gaussian input states achieve the minimaloutput entropy or attain the
capacity of Gaussian channels. Hence, one may be tempted to believe that this could be
true in general and thus consider only Gaussian input statesfrom the very beginning. In this
restricted settings, quite far-reaching statements concerning additivity can yet be made. For
example, if one requires that the encoding is done entirely in Gaussian terms, the additivity
for minimal output entropies can be proven in quite some generality [42]. The Gaussian
minimal output entropyis defined as

να,G(T ) = inf
ρ

(Sα ◦ T )(ρ), (46)

where the infimum is taken over all Gaussian states. Then one finds that the minimal out-
putα-entropy for single-mode Gaussian channelsT1, ..., Tn, as in Eq. (8) characterized by
X1, ..., Xn andY1, ..., Yn, Yi ≥ 0, and det[Xi] = det[Xj ] for all i, j is additive for all
α ∈ (1,∞). This includes the important case of identical Gaussian channelsT ,

να,G(T⊗n) = nνα,G(T ) (47)

for all n and allα ∈ (1,∞). Moreover, forα = 2 this kind of additivity was proven for
arbitrary multi-mode Gaussian channels for whichdet[Xi] 6= 0 [42].
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5.4 Equivalence of Gaussian additivity problems

The aim of this section is to make a first step towards proving that the equivalence of additivity
problems [39, 40, 41] holds within the Gaussian world, whereall resources and quantities are
appropriately replaced by their Gaussian counterparts. Since all states in this section are
Gaussian and thus essentially characterized by their covariance matrices (except from the
first moments, which are not relevant, e.g., for their entanglement content and their entropy),
we will for simplicity of notation use the covariance matrixγ as the argument of functions
which are supposed to act on density operators. That is, we will write T (γ) andS(γ) meaning
T (ργ) andS(ργ), with ργ being the centered Gaussian state with covariance matrixγ. Let
us first define the quantities under consideration:

I. Gaussian entanglement of formation:The Gaussian version [43] of theentanglement of
formation(EoF) [24] restricts to decompositions into Gaussian states – the probability
distribution in the decomposition is however not restricted to be Gaussian (although
there exists always an optimal decomposition with this property [43]). As proven in
Ref. [43], we have

EG(γ) = inf
det[Γ]=1

{

E(Γ)
∣

∣γ ≥ Γ ≥ EG(γ)
}

= inf
det[Γ]=1

{

E(Γ)
∣

∣γ ≥ Γ ≥ iσ
}

, (48)

whereE(Γ) is the entropy of entanglement of the pure Gaussian state with covari-
ance matrixΓ, i.e., the von-Neumann entropy of its reduced state. The corresponding
decomposition contains only phase-space displaced versions of this state. Obviously
this is an upper bound for the (unconstrained)entanglement of formation[24], i.e.,
EG(γ) ≥ EF (γ) where equality holds at least for the case of symmetric two-mode
states (for which the reduced states are unitarily equivalent) [44]. For these statesEG

was proven to be additive [43]

EG

(

⊕n
i=1 γi

)

=

n
∑

i=1

EG(γi) =

n
∑

i=1

EF (γi) , (49)

and convex on the level of covariance matrices, i.e.,

EG

(

λγ1 + (1 − λ)γ2

)

≤ λEG(γ1) + (1 − λ)EG(γ2) (50)

for all λ ∈ [0, 1].

II. Gaussian capacity:We introduce the Gaussian counterpartC1,G(T,K) of the single-
shot expressionC1(T,K) in Eq. (27) by restricting the input ensemble to be a set of
phase-space translates of a Gaussian state, distributed according to a Gaussian distri-
bution. Evidently,C1,G(T,K) ≤ C1(T,K) and the question of additivity is, whether
for all Gaussian channels equality holds in

n
∑

i=1

C1,G(Ti,Ki) ≤ C1,G

(

⊗n
i=1 Ti, ⊗n

i=1Ki

)

. (51)

As mentioned above, for the lossy channel we have indeed that[31]

C1,G(T,K) = C1(T,K) = C(T,K). (52)
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Gaussian MSW correspondence: Following Matsumoto, Shimono, and Winter (MSW)
in Ref. [40], one can easily establish a relation betweenEG, C1,G, andν1,G. Let T : γ 7→
XγXT +Y be a Gaussian channel acting on systems ofn-modes. Then there exists a dilation,
i.e., a pure state ofm ≤ 2nmodes with covariance matrixγ0 and a symplectic transformation
S, such that

T (γ) = [γ′]A , γ′ = S(γ ⊕ γ0)S
T , (53)

whereA andB refer to ann-mode andm-mode subsystem, and as before[γ′]A denotes
the covariance matrix corresponding to subsystemA. This is nothing but the corresponding
principal submatrix. ReplacingK by the singleton set of a fixed average Gaussian input state
with covariance matrixγ leads to a new quantityC1,G(T, γ), which is defined as

C1,G(T, γ) = (S ◦ T )(γ) − EG

(

γ′
)

. (54)

This relates the Gaussian EoF to the capacityC1,G. In fact, if G(T,K) is the set of all
covariance matricesγ′ in Eq. (53) for whichγ ∈ K, then

C1,G(T,K) = sup
Γ∈G(T,K)

S
(

[Γ]A
)

− EG

(

Γ
)

, (55)

which is the Gaussian analogue of the MSW correspondence [40]. Moreover, the simplicity
of the Gaussian EoF in Eq. (48) leads to a relation betweenEG and the minimum output
entropy: ifγ, γ′, andT are again related via Eq. (53), then

EG

(

γ′
)

= inf
iσ≤γ̃≤γ

(S ◦ T )(γ̃), (56)

ν1,G(T ) = inf
γ
EG(γ′) . (57)

Implications for Gaussian additivity problems: Using the above Gaussian analogue of
the MSW correspondence and following the argumentation in Ref. [39, 40], one can easily
prove that Gaussian versions of all the above additivity statements would be implied by the
super-additivity of the Gaussian entanglement of formation. Letγ be the covariance matrix
of a bi-partite Gaussian state consisting ofn bi-partite sub-systems19 with respective reduced
covariance matrices[γ]i. ThenEG is said to besuper-additiveif

EG(γ) ≥
n

∑

i=1

EG([γ]i) . (58)

Note thatγ is not assumed to be of direct sum structure. If Eq. (58) holdsfor all covariance
matricesγ, then

(I.) EG is additive, i.e.,EG(γ1 ⊕ γ2) = EG(γ1) + EG(γ2),

(II.) the constrained Gaussian classical capacity is additive, i.e., equality holds in Eq. (51),

(III.) the minimal output entropy restricted to Gaussian inputs is additive, i.e.,ν1,G(T1 ⊗
T2) = ν1,G(T1) + ν1,G(T1),

(IV.) EG is convex on the level of covariance matrices.
19Each sub-system may in turn consist out of an arbitrary (but finite) number of modes, jointly forming sub-

systemsA andB.
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Here, (I.) is evident, and (II.), (III.) are proven in close analogy to Refs. [39, 40]. Statement
(IV.) is shown as follows: consider two bi-partite covariance matricesγ1 andγ2 of equal size.
There is a local symplectic transformationS (consisting out of 50:50 beam splitters), which
acts as

S(γ1 ⊕ γ2)S
T =

1

2

(

γ1 + γ2 γ1 − γ2

γ1 − γ2 γ1 + γ2

)

=: Γ . (59)

By the implied additivity ofEG and its unitary invariance20, we have thatEG(γ1)+EG(γ2) =
EG(Γ). Moreover, super-additivity implies thatEG(Γ) ≥ 2EG

(

(γ1 + γ2)/2
)

, resulting in
convexity for the caseλ = 1/2. By interpolation and continuity this can then be extended to
the entire intervalλ ∈ [0, 1].

Remarkably, this implication has a simple converse: ifEG is additive and convex on
the level of covariance matrices, then it is super-additive. To see this, we introduce a local
symplectic transformationθ = 1⊕ (−1) with block structure as in Eq. (59). Then, for every

Γ =

(

γ1 C
CT γ2

)

(60)

we have

EG(Γ) =
[

EG(Γ) + EG(θΓθ)
]

/2

≥ EG

(

(Γ + θΓθ)/2
)

= EG(γ1 ⊕ γ2)

= EG(γ1) + EG(γ2) , (61)

where the inequality is due to the assumed convexity and the last equation reflects additivity
of EG. Note that by the above result, ifEG is not convex on covariance matrices, then either
EF 6= EG orEF is not additive.

6 Outlook

This article was concerned with the theory of Gaussian quantum communication channels.
Such channels arise in several practical contexts, most importantly as models for lossy fibers.
Emphasis was put on questions related to capacities, which give the best possible bounds on
the rates that can be achieved when using channels for the communication of quantum or
classical information.

Though many basic questions have been solved over the last few years, many interesting
questions in the theory of bosonic Gaussian channels are essentially open. This applies in
particular to additivity issues: general formulae for the classical information capacity are
simply not available before a resolution of these issues. For specific channels, a number
of methods can yet be applied to find additivity of output purities. It may be interesting to
see how far the idea of relating minimal1-entropies to2-entropies as in Ref. [46] could be
extended in the infinite-dimensional context.

Then, there is the old conjecture that to take Gaussian ensembles does not constitute a
restriction of generality anyway when transmitting information through a Gaussian quantum
channel. In the light of this conjecture, it would be interesting whether a complete theory

20EG

(

S(γ1 ⊕ γ2)ST
)

= EG(γ1 ⊕ γ2) sinceS is a local unitary.
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of quantum communication can be formulated, restricting both to Gaussian ensembles and
Gaussian channels.

Finally, all what has been stated on capacities in this article refers to the case of memory-
less channels. For Gaussian channels with memory, the situation can be quite different. For
example, notably, the classical information capacity can be enhanced using entangled instead
of product inputs [47, 48]. It would in this context also be interesting to see the program of
Ref. [49] implemented in the practically important case of Gaussian quantum channels.
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