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This article provides an elementary introduction to Gaarssihannels and their capacities.
We review results on the classical, quantum, and entangleassisted capacities and dis-
cuss related entropic quantities as well as additivityéssuSome of the known results are
extended. In particular, it is shown that the quantum caéolit entropy is maximized by
Gaussian states and that some implications for additivibplems can be extended to the
Gaussian setting.
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1 Introduction

Any physical operation that reflects the time evolution @& #tate of a quantum system can
be regarded as a channel. In particular, quantum chanrep tire way how quantum states
are modified when subjected to noisy quantum communicai@s] Couplings to other
external degrees of freedom, often beyond detailed comtibltypically lead to losses and
decoherence, effects that are modelled by appropriateindgary quantum channels.

Gaussian quantum channels play a quite central role indetat.all, good models for the
transmission of light through fibers are provided by Gausslzannels. This is no accident:
linear couplings of bosonic systems to other bosonic systith quadratic Hamiltonians
can in fact appropriately be said to be ubiquitous in physicsthis optical context then,
the time evolution of the modes of interest, disregardirgrtodes beyond control, is then
reflected by a Gaussian bosonic channel. Random classiis#, rietroduced by Gaussian
random displacements in phase space, gives also rise tossi@aguantum channel, as well
as losses that can be modelled as a beam spilitter like ititamagith the vacuum or a thermal
mode.

This article provides a brief introduction into the theofy@Gaussian quantum channels.
After setting the notation and introducing to the elemgntancepts, we provide a number of
practically relevant examples. Emphasis will later be putjoestions concerning capacities:
Capacities come in several flavours, and essentially dyahe usefulness of a quantum
channel for the transmission of classical or quantum in&diom. We will briefly highlight
several major results that have been achieved in this fialthllif, we discuss a number of
open questions, notably related to the intriguing but egeng and fundamental questions of
additivities of quantum channel capacities.

2 Gaussian channels

In mathematical terms guantum channels a completely positive trace-preserving map
p — T(p) that takes states, i.e., density operajoesting on some Hilbert spadé, into
state$. For simplicity we will always assume that output and inpilbert spaces are identi-
cal. Every channel can be conceived as reduction of a urgtarlgtion in a larger quantum
system. So for any chann€&lthere exists a stai@z on a Hilbert spacé{ g, and a unitani/
such that

T(p) =tre[U(p ® pe)UT. 1)

The system labeled@ serves as an environment, embodying degrees of freedomiohwh
elude the actual observation, inducing a decoherence ggocehe channel is then a local

1This is a review article. Previously unpublished matesabiesented in Section 3.3 and in Section 5.4.

2This expression refers to the Schrodinger picture of quanthannels. Equivalently, one can define the dual
linear mapI™ in the Heisenberg picture vialtT* (A)] = tr[T'(p) A], which in turn is then completely positive and
unital.



manifestation of the unitary evolution of the joint systeinGaussian channdlLl, [2,[3,[4]5]

is now a channel of the form as in Ef] (1), whéfas a Gaussian unitary, determined by a
quadratic bosonic Hamiltonian, apg; is a Gaussian statel[6]. In many cases, of which the
lossy optical fiber is the most prominent one, this restiitto quadratic Hamiltonians gives
a pretty good description of the physical system. Note thihbagh the channel is assumed
to be Gausssian in the entire article, the input states aneauessarily taken to be Gaussian.

2.1 Preliminaries

It seems appropriate for the following purposes to brieflytlii@ notation concerning Gaus-
sian states and their transformatiohs[[5/16[17, 8]. For a mumrsystem withn modes,
i.e., n canonical degrees of freedom, thanonical coordinatesvill be denoted askR =
(x1,p1, -, Tn,Pn). Most naturally, these operators can be conceived as pomeing to
field quadratures. Although all statements in this artidétirue for any physical system
having canonical coordinates, we will often refer to thei@tcontext when intuitively de-
scribing the action of a channel. The creation and annibiatperators are related to these
canonical coordinates according = (a; + a!)/v2 andp; = —i(a; — a})/v/2. The
coordinates satisfy the canonical commutation relatiatisch can be expressed in terms of
theWey! operator®r displacement operatofd’s = i€ 7R with £ e R™:

T o¢’ - 0 1
WiWe = WeW/le' ¢, 02@(_1 o)’ 2
i=1

where we have sét = 1. The matrixo defines the symplectic scalar product, simply indi-
cating that position and momentum of the same mode do not edenm

The Fourier transform of the ordinary Wigner function in pa@pac@® 2" is thecharac-
teristic function

Xp(§) = tr[pWe], ®)

from which the state can be reobtainedgas- [ d*"¢ Xp(g)Wg /(2m)™. Gaussian states
are exactly those having a Gaussian characteristic funaiud therefore a Gaussian Wigner
function in phase space:
T T
Xp(€) = e7& TE/AFDTE, (4)

Here, the2n x 2n-matrix I' and the vectolD € RR>" are essentially the first and second
moments: they are related to the covariance matrxd the displacementsasT’ = o7 vo
andD = od. This choice is then consistent with the definition of towariance matrixas
having entriesy; , = 2Re<(Rj—dj)(Rk—dk)>p,j, k=1,...,2n,withd; = tr[R;p]. States
always satisfy the Heisenberg uncertainty principle, Wwhian be expressed ast io > 0.
This is a simple semi-definite constraint onto any matrixeafad moments, also obeyed by
every non-Gaussian state.

2.2 General Gaussian channels

The simplest Gaussian channelis a lossless unitary esolgoverned by a quadratic bosonic
Hamiltonian: |
p'—>UpUT, Uzeézk,szszRl’ 5)



with H being a real and symmetritn x 2n matrix. Such unitaries correspond to a repre-
sentation of the real symplectic gro¥fp(2n, R), formed by those real matrices for which
SoST = o [[7,/8,[9]. These are exactly the linear transformations tipieserve the com-
mutation relations. The relation between suafaaonicaltransformation in phase space and
the corresponding unitary in Hilbert space is givendy= 7. Needless to say, Gaussian
unitaries are ubiquitous in physics, in particular in optiand this is the reason why Gaus-
sian channels play such an important role. Notably, th@adaf ideal beam splitters, phase
shifters, and squeezers correspond to symplectic tranatans?

It is often instructive to consider transformations on teeel of Weyl operators in the
Heisenberg picture. For a symplectic transformation weelly — Wg-1.. The action of
ageneral Gaussian channgl— T'(p) can be phrased as

We — Wie e 3ETYE (6)

whereX, Y are realn x 2n-matrices[[L| 5.17]. Additional linear terms in the quadrdétirm
are omitted since they merely result in displacements is@bkpace, which are not interesting
for later purpose. Not any transformation of the above fa@mpdssible: complete positivity
of the channel dictates thét

Y +ioc—iXToX >0. (7)

Depending on the context it may be more appropriate or tamesp to formulate a Gaussian
channel in the Schrodinger pictupe— Tx y (p) or to define it as a transformation of
covariance matrices

y— XTyX 4. (8)

This is the most general form of a Gaussian channel. RouglelglsngX serves the pur-
pose of amplification or attenuation and rotation in phasespwhereas thg contribution
is a noise term which may consist of quantum (required to ntlaenap physical) as well as
classical noise. Interestingly¥ may be any real matrix, and hence, any map— X7y X
can be approximately realized, as long as 'sufficient naseldded. In this language, it
also becomes immediately apparent how much noise will bedated by any physical de-
vice approximating amplification or time reversal, meanihgse conjugation in an optical
context. For second moments far away from minimal uncetaihis additional noise may
hardly have an impact (so classical fields can be phase cateid@fter all), whereas close to
minimal uncertainty this is not so any longer.

2.3 Important examplesof Gaussian channels

The practically most important Gaussian channel is prgbablidealized action of a fiber.
Moreover, as mentioned earlier, any situation where a @iadroupling to a Gaussian en-
vironment provides a good description can be cast into tha ff a Gaussian channel. We
will in the following consider a number of important speaialses of Gaussian channels for
single modes:

3Any suchS can be decomposed intosgueezing componerand apassive operatiofd]. So one may write
S =VZW,with V,\W € K(n) = Sp(2n,R) N SO(2n) are orthogonal symplectic transformations, forming
the subgroup of passive, i.e., number-preserving, opasti In turn,Z = diag (z1,1/21,...,2n, 1/zn) with
z1, ..., z2n € R\{0} are local single-mode squeezings.

4The case of a single mode is particularly transparent. Thexedness can be expressed entirely in terms of
determinants, and hence, the above requirement can beagté formy” > 0, anddet[Y] > (det[X] — 1)2.



1. Theclassical noise channaherely adds classical Gaussian noise to a quantum state,
ie, X = 1,Y > 0[3 [1G,[11,[12]. In Schrodinger picture this channel can be
represented by a random displacement according to a dhssassian probability

distribution: )

T Arvdety

2. In thethermal noise channgB, [11] a mode passively interacts with another mode in a
thermal statey — T'(p) = trg[U, (p® pE)Uﬂ;]. The result is as if the mode had been
coupled in with a beam splitter of some transmittivity For the second moments, we
have that

T(p) / P& WepW{ e 18778 ©)

v [Sy(y @ cl2) S} 5, (10)
wherecl,, ¢ > 1, is the covariance matrix of a thermaibbs state

o0

pr= 20> (S57) bt 1)

n=0

with mean photon numbér — 1)/2. [.|p denotes the leading x 2 submatrix. The
passive symplectic transformatisy) is given by

1 1—7’]]12
s = | Vil v 0.1]. 12
n |:_ /1_,,7]12 \/5]12 ]ane[v] ( )
So we obtain

vy ny+ (1 =n)cls. (13)

3. Thelossy channeis obtained by setting = 1 in Eq{I3). It reflects photon loss with
probabilityl — n. This channel is the prototype for optical communicatiotigh a
lossy fiber, since thermal photons (leading to a contributio> 1) are negligible at
room temperature. When using an optical fiber of lerigthdabsorbtion lengtti4, we
may set) = e~'/!4. The lossy channel witk = /7715, Y = (1 — 7)1, is also called
attenuation channdB].

4. Theamplification channd@] is of the form
X=ynly, Y=n—-1)13, ne(l,00). (14)

Here, the ternl’ is a consequence of the noise that is added due to Heisenberg u
certainty. Note that a classical noise channel can be reedwas a concatenation of a
lossy channel, followed by an amplification.

All these examples correspond to a single mode charaatkbye fixed frequency.
This is often referred to as the narrowband case as oppodedddband channeld3, 14,
15], which consist out of many uncoupled single-mode chisneach of which corresponds
to a certain frequency;, i = 1,2,... . Best studied is the simple homogeneous case of a
lossy broadband channel (equally spaced frequengijasith equal transmittivity; in all the
modes).

5In the Heisenberg picture this means that the annihilatjgerator transforms as— V7 a++/1—n b, where
b is the annihilation operator of the ancillary mode.



It shall finally be mentioned that the very extensive litaraton harmonic open quantum
systems is essentially concerned with Gaussian channalspscific kind, yet one where the
environment consists of infinitely many modes, where thedircoupling is characterized by
some spectral density.

3 Entropiesand quantum mutual information

3.1 Output entropies

Channels describing the physical transmission of quantatastypically introduce noise to
the states as a consequence of a decoherence process.fRitsane generally transformed
into mixed outputs, so into statpshaving a positive von-Neumann entropy

S(p) = —tr[plog p. (15)

The entropy of the output will clearly depend on the input grelchannel itself, and the mini-
mal such entropy can be taken as a characteristic featune giuantum channel. Introducing
more generally the: Renyi entropiefor o > 0 as

Salp) = —— logtr]p"] (16)

—
this minimal output entropy16] is then defined &s

va(T) = nf(Sa o T)(p)- 7)

The Renyi entropie§[17] are derived from thaorms of the statd)p||, = tr[p®]'/“. In case
of the limit lim,~_; one retains the von-Neumann entropy, ilen,~ 1 Sa(p) = S(p); for

a = 2, this is thepurity in the closer sense. Roughly speaking, the smaller the rnalrotput
entropy, the less decohering is the channel (see, e.g.[[l&3f. The actual significance of
this quantity yet originates from its intimate relatiorslebncerning questions of capacities.
This will be elaborated on in the subsequent section.

3.2 Mutual information and coherent infor mation

In Shannon’s seminal channel coding theorem the capaciylassical channel is expressed
in terms of the classical mutual informatidn[20]. In fact,\ee will see below, the quantum
analogue of this quantity plays a similar role in quanturninfation theory. For any quantum
channell’ and any quantum stajeacting on a Hilbert spacg(, one defines thguantum
mutual information/ (p, T') as

I(p,T) = S(p) + (SoT)(p) = S(p,T), (18)

whereS(p,T) = (1 @ T)(|¢){¥|) and|¢) € Hp ® H is any purification of the state
p = trp[|w)(v|] [B,[1Y9]. Itis not difficult to see thaf(p, T) does not depend on the chosen
purification. The quantum mutual information has many @éd& properties: it is positive,
concave with respect to, and additive with respect to quantum channels of the fofffi.

5We use the notatioiS o T')(p) = S(T'(p)).



The latter property comes in very handy when relating thiangjty to the entanglement-
assisted classical capacity. An important part of the quannutual information is theo-
herent informatiorgiven by

J(p,T) = (SoT)(p) = S(p.T). (19)

J(p,T) can be positive as well as negative, it is convex with resfiet but its convexity
properties with respect teare unclear.

3.3 Entropies of Gaussian states and extremal properties

When maximizing the rate at which information can be sermubgh a Gaussian channel,
Gaussian states play an important role. In fact, in manysci$arns out that encoding the
information into Gaussian states leads to the highestrres#on rates. This is mainly due
to the fact that for a given covariance matrix many entropiargities take on their extremal
values for Gaussian states. These entropic quantitiespdadt any unitarily invariant func-
tional, can for Gaussian states immediately be read offythetectic spectrum of the covari-
ance matrix: any covariance matrjxof n modes can be brought to thélliamson normal
form[21]], v — SyST = diag(cy, c1, 2, €2, ..., €n, ¢, ) With an appropriaté € Sp(2n, R),
and{c; : i = 1,...,n} being the positive part of the spectrumiefy. This is nothing but the
familiar normal mode decomposition with thecorresponding to the normal mode frequen-
cies. Then, the problem of evaluating any of the above gtiesits reduced to a single-mode
problem. For example, the von-Neumann entropy is givemn by [2

n

s =Y 0(%5), (20)

i=1

whereg(N) = (N +1)log(N+1)— Nlog N is the entropy of a thermal Gaussian state with
average photon numba@f. Similar expressions can be found for the other entropiatities.

Consider now any statgewhich has the same first and second moments as its Gaussian
counterparp. Then

S(p) = 8(p) = S(p, p) +tr [(p — p)log p], (21)

where the first term is the nonnegative relative entropythedecond term vanishes since the
expectation value of the operatarp depends only on the first and second moments. Hence,
the Gaussian state has the largest entropy among all stitea given covariance matrix
[2]. A more sophisticated argument, using ideas of convexropation and the theorem of
Kuhn and Tucker, shows that the same holds true for the gmantutual information[IB3]:
For any Gaussian chanriEland fixed first and second momentsothe respective Gaussian
state maximize$(p, T'). Whether a similar statement also holds for the cohereatiimétion
is not known.

Another very useful quantity that takes its extremal valme$aussian states, we would
like to mention at this point, is thguantum conditional entrogi2?Z], defined as

S(p: AlB) = S(p) — S(pa) (22)

"The fact, that Gaussian states maximize the entropy hasdahing consequences: (i) it is an essential ingre-
dient in showing that Gaussian input states achieve theickscapacity for a lossy channel, (ii) it immediately
implies that bipartite states that contain the largest athofientanglement under an energy constraint are Gaussian,
and (iii) it implies that the entropy of a Gaussian state isoawe as a function of the covariance matrix.




in a bi-partite system with partd and B. Herep, is the reduction with respect to system
A. It can be shown in a very similar fashion as before that thizngty is maximized on
Gaussian states for fixed second moments, although we naweter a difference between
two von-Neumann entropies. Lgtagain be a state with the same first and second moments
as its Gaussian counterpartthen

S(p:AlB) = S(p: A[B) = S(p)—S(pa) = S(p) + S(pa)
= S(pllp) — S(pallpa)
+ tr[(p— p)log p] —tr[(pa — pa)logpa] > 0. (23)

In the last inequality, it is used that the relative entropy only decrease under joint ap-
plication of completely positive maps. This extremal prapés helpful when assessing for
example achievable rates in state merging [22], for whiehgitlantum conditional entropy is
an upper bound. More importantly in the Gaussian settirgh#gative of the conditional en-
tropy is a lower bound[23] to thdistillable entanglemeriB4], which can be used to detect
distillable entanglement in quantum states by measuringrebmoments only. Whenever
one performs a measurement of second moments (estimatthe gériances of the quadra-
tures) of an unknown stafeand finds that its Gaussian counterpart satisfies

—S(p: AIB) = S(pa) — S(p) >0, (24)

then one can argue that this is in turn a lower bound for thidldisle entanglemenEp (p)
of 5. In this way, one can infer about the distillable entanglettd an unknown quantum
state

Ep(f) > S(pa) — S(p), (25)

without having to assume that the quantum state is GausEhas.is relevant as any knowl-
edge whether a state is Gaussian is typically not accessitheut complete state tomog-
raphy. Moreover, this bound is robust against small pedtiohs, which is also practically
important since even complete state tomography will detegrthe state only up to some
error.

3.4 Constrained quantities

There are essentially two subtleti@si[25] 26] that arisééninfinite-dimensional context as
we encounter it here for Gaussian quantum channels: on #anbamd, there is the necessity
of natural input constraints, such as one of finite mean gne@herwise, the capacities
diverge. On the other hand, there is the possibility of candus state ensembfesThe
need for a constraint is already obvious when consideriegvtin-Neumann entropy: On
a state space over an infinite dimensional Hilbert spaceydheNeumann entropy is not
(trace-norm) continuous, but only lower semi-continfpasd almost everywhere infinite.

This problem can be tamed by introducing an appropriatetcaing For our purposes,
we may take the Hamiltonia = >, (27 + p?)/2. Then, instead of taking all states into
account, one may consider the subset

K ={p:trlpH] < h}. (26)

8This is understood as taking into account probability messsan the set of quantum states. For an approach in
the language of probability and operator theory, see REI. [2

9This means that if, for a stajg {px } is a sequence of states for whigh — p in trace-norm as. — oo, then
S(p) <liminf, oo S(pn).




introducing for somé, > 0 aconstraint on the mean enef§yor mean photon numbey =

h — 1/2. Similarly, for tensor products we consideP™ = {p : tr[pH®"] < nh}. On this
very natural subséf the von-Neumann entropy and the classical information@gpeetain
their continuity. In fact, many entanglement measures @ain the continuity properties
familiar in the finite-dimensional context, such that, gtlye entropy of a subsystem for pure
states can indeed be interpreted as the distillable ergaragit[27].

4 Capacities

In classical information theory a single number descrilieg much information can reliably
be sent through a channel: ttapacity In quantum information theory the situation is more
complicated and each channel is characterized by a numbdédferent capacities [28]. More
precisely, which capacity is the relevant one depends othehee want to transmit classical
or quantum information, and on the resources and protocelalew for. An important
resource that we must consider is entanglement shared éetsemder and receiver. The
presence or absence of this resource together with theiguediout sending classical or
guantum information leads to four basic capacities, whiehwill discuss in the following.

4.1 Classical information capacity

Theclassical information capacitis the asymptotically achievable number of classical bits
that can be reliably transmitted from a sender to a receigeupe of the channel. Here, it
is assumed that the parties may coherently encode and ddwddormation in the sense
that they may use entangled states as codewords at the imgybiat measurements over
arbitrary channel uses at the output. This answers eshgtitia question of how useful a
quantum channel is for the transmission of classical infdiom.

This capacity is derived from the single-shot expressidi 2], appropriately con-
strained as above,

C1(T,K) = sup S(ZPiT(Pi)) - ZPi(S oT)(pi)| » (27)

where the supremum is taken over all probability distritaisiand sets of states satisfyjmg-

>, pipi under the constraint € K [25,[26] 1. By the Holevo-Schumacher-Westmoreland
(HSW) theorem([29,30], this single-shot expression gives dapacity if the encoding is
restricted to product states. Hence, the full classicalrmition capacity can formally be
expressed as the regularization(gf,

1
C(T,K) = lim ~Cy(T", K=", (28)

10More general constraints than this one can be consideradintg tocompact subsets of state spamewhich
one retains continuity properties in particular for the A@umann entropy and the classical information capacity
[L2,128 [26]2)7]. Essentially, any unbounded positive dperd with a spectrum without limiting points would also
be appropriate, such thatetxp[—BH] < oo forall 8 > 0.

The above constraint also ensures &b T')(p) < oco. The convex hull function of o T, given byp —
S(p,T) = inf 3", ps(S o T)(ps) in Eq. [ZT), with the infimum being taken over all ensembleh i, p;p; = p,
is still convex in the unconstrained case, but no longericoots, however, lower semi-continuous in the above
sense.



Clearly,C(T, K) > C1(T, K) since the latter does not allow for inputs which are entashgle
over several instances of the channel. Yet, it is in genesaknown whether this possi-
bility comes along with any advantage at all, so whetherregital inputs facilitate a better
information transfer. This will be remarked on later.

Note that in this infinite-dimensional setting, the conistrés required to obtain a mean-
ingful expression for the capacity: for all non-trivial Gasian channels the optimization over
allinput ensembles in E{R7) would lead to an infinite ciétgachis can simply be achieved
by encoding the information into phase space translatesy$ignal state. Then no matter
how much noise is induced by the channel, we can always chtbesspacing between the
different signal states sufficiently large such that theylwadistinguished nearly perfectly at
the output.

Let us now follow the lines of Refl.[31] and sketch the deiimabf the classical capacity
for lossy channels. First of all, a lower bound 61T, X) can be obtained by choosing an
explicit input ensemble for EqLCR7). Random coding overereht states according to a
classical Gaussian probability distribution leads to agrage input state of the form

x /d2§ Wel0)(0|W{ e Ve (29)

with covariance matrixy = 1 4+ V. Hence, if we choos& = 2N1, the average number
of photons in the input state will be [pata] = N. The constraint seé€ hence corresponds
to the choice ofh = N + 1/2. After passing a lossy channel with transmittiviythis
changes tar [T(p)a’a] = nN, and sincel'(p) is a thermal state, its entropy is given by
(SoT)(p) = g(nN). The action of a lossy channel on a coherent input state ikifb s
the state by a factayj towards the origin in phase space. In other words, the chanaes
coherent states onto coherent states and since the lateeréig entropy, we havel[3]

Ci(T,K) = (SoT)(p) = g(nN). (30)

Assume now thap is the average input state optimizidg (7", ") under a given
constraint for the mean energy as described above. Then

C1(T®™ K®™) < (S o T®™)( Z (SoT)( (31)

wherep; is the reduction of to thei-th mode and the second inequality is due to the subaddi-
tivity of the von-Neumann entropy. Since for a fixed averagetpn numbetr [5;a'a] = N;
the entropy is maximized by a Gaussian state, we have iniaddiat(SoT)(p;) < g(nN;).
Together with the lower bound this implies that the cladsiapacity of a lossy channelis
indeed given byC'(T, K) = g(nN) [31]], if the average number of input photons per channel
use is restricted to be not larger thanh corresponding to the constrained associated With
Hence random coding over coherent states turns out to bealpdind neither non-classical
signal states nor entanglement is required in the encottpd%
An immediate consequence of this result is that the classagacity of the homogeneous
broadband channél is given by

TP
C(T,K) = tl\/; = roun, (32)
120f course, there might also be optimal encodings WhICh ddoéxg number state alphabet or entanglement
between successive channel uses.

10



where P is the average input power amds the transmission time related to the frequency
spacingdw = 27 /t. For the lossless cage= 1 this capacity was derived in Ref._[15.132].

4.2 Quantum capacities

The quantum capacitys the rate at which qubits can be reliably transmitted tgtothe
channel from a sender to a receiver. This transmission is dgain employing appropriate
encodings and decodings before envoking instances of tretguon channel]3]. This capac-
ity can be made precise using therm of complete boundednésSs The question is how
well the identity channel can be approximated in this norneré&/specifically([313], the quan-
tum capacity is the supremum of > 0 such that for alk, 6 > 0 there existn, m € N,
decodingdp and encoding%g with

<6, ||1dS" — ToT®™Tg||,, < e (33)

‘ n
— —cC
m
One may also consider a weaker instance, allowingeferrors, and then look at @.-
capacityl[3]. Itis known that the quantum capacity doesmatdase if we allow for additional
classical forward communication [34].

In Ref. [35] it was proven that the quantum capacit{’) can be expressed in terms of
the coherent information as

Q(T) = lim 1 sup J(p, T®") . (34)

n—oon

Unfortunately, the asymptotic regularization is requiiredeneral, since the supremum over
the coherent information is known to be not additfreHowever, the single-shot quantity
sup, J(p, T) already gives a useful lower bound @{7"). For the classical noise Gaussian
channel and Gaussiarthis was first shown to be attainable in REf.I[10], based oliegarork
[34], using methods of quantum stabilizer codes that embfuita-dimensional protected
code space in an infinite-dimensional one. For more geneeattal noise channels, this is
given by [3]

J(p,T) (35)

D+N —N-1 D—-N+N-1
o) g (REN =N ) (DN N 1),

D = /(N+N +12-49N(N + 1), (36)

whereN’ = nN + (1 — n)(c — 1)/2 is the average photon number at the channel output.
In fact, the same bound holds for the amplification chanr@lwhichn > 1 and N’ =
nN + (n — 1)(c+ 1)/2. For broadband channels, lower bounds of this kind on thetgna
capacity were discussed in Ref.]13].

A computable upper bound on the quantum capacity of any élasmgiven byQ(T) <
log ||T0||eo [B]. For finite-dimensional systentsis the matrix transposition, which corre-
sponds to the momentum-reversal operation in the contswatiables case. This bound

B3This is defined a§T||ch = sup,, ||Idn ® T'||, where||T|| = supx ||T(X)||1/[|X]||1-

14Note also that while the subtleties in the infinite-dimenaiocontext have been fleshed out and precisely clar-
ified for the classical information capacity_125.126], theaemglement-assisted capacify[36], and measures of en-
tanglement[12i7._26], questions of continuity related to gonantum capacity are to our knowledge still awaiting a
rigorous formulation.
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is zero forentanglement breakinghannel® and additive for tensor products of channels.
For attenuation and amplification channels with classic#e i.e., channels acting as—
7y + |1 — nlc, this leads to[l3]

Q(T) < log(1+mn) —log|l —n| —logc. (37)

Note that this bound is finite for all # 1. This is remarkable since it does not depend on the
input energy. That is, unlike the classical capacity, theamstrained quantum capacity does
typically not diverge. Moreover, it is even zero in the case 1/2, since then the no-cloning
theorem forbids an asymptotic error-free transmissioruaium information.

4.3 Entanglement-assisted capacities

Needless to say, in a quantum information context, it is nmedul to see what rates can be
achieved for the transfer of classical information wheraegtement is present. This is the
kind of information transfer considered in teatanglement-assisted classical capacity
[38,[36]. It is defined as the rate at which bits that can bestratted in a reliable manner
in the presence of an unlimited amount of prior entanglerakated between the sender and
the receiver. In just the same manner, émtanglement-assisted quantum capa€liy may

be definedl136, 13, 14]. Similarly, this quantifies the rate/hich qubits can asymptotically
be reliably transmitted per channel use, again in the poesefunlimited entanglement.
Exploiting teleportation and dense coding is not difficolsee thakQ r = Cr. Now, the
entanglement-assisted capadity is intimately related to the quantum mutual information,
as just the supremum of this quantity with respect to alestate K as in Eq.[Zb)

Cr(T,K) =supI(p,T). (38)
P

Again, with this constrain{36], the quantity regains thgpeopriate continuity propertié%
Note that in this case, no asymptotic version has to be cereid and due to the additivity
of the quantum mutual information the single-shot expsaiready provides the capacity.

In a sense EqLIB8) is the direct analogue of Shannon’s cds=dding theorem. The
latter states that the classical capacity of a classicaliolas given by the maximum mutual
information. The main difference is, however, that in thassical case shared randomness
does not increase the capacity, whereas for quantum cleasimaied entanglement typically
increases the capacity,

C(T,K) < Cg(T,K). (39)
Again, similar to the classical cagés is conjectured to characterize equivalence classes of
channels within which all channels can efficiently simulate anothei 138].

For Gaussian channels the extremal property of Gaussitas stith respect to the quan-
tum mutual information allows us to calcula€es; (7', ) by only maximizing over con-
strained Gaussian statps For attenuation channels with classical noise, hew> 7y +
(1 —n)cwith 0 < n < 1, it was shown in Ref[]3] that

with the coherent informatiodi(p, T') taken from Eq.[(35). For the homogeneous broadband
lossy channel, extensively discussed in Refl [18, 14], idéagain thaC'x (T, K) o« tv/P.

15A channel is called entanglement breaking if it correspdndsmeasure and repreparation scheme.
18In a more general formulation — i.e., for non-Gaussian gairstd channels, or for Gaussian channels with
different constraints — one has to require thab ,c i (S o T')(p) < oo [B6].
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5 Additivity issues

In the previous sections, we have encountered additivaplems of several quantities related
to quantum channels. Such questions are at the core of quamtormation theory: essen-
tially, the questions is whether for product channels oneprtentially gain from utilizing
entangled inputs. This applies in particular to the adidjtiof the single-shot expressidary
and the minimal output entropy[16]. A number of partial results on additivity problems
have been found. Yet, a conclusive answer to the most ceadditivity questions is still
lacking. In particular, it is one of the indeed intriguingespquestions of quantum infor-
mation science whether the single-shot expresslpim Eq. [ZT) is already identical to the
classical information capacity as it is true for the caséneflossy channel [31].

5.1 Equivalence of additivity problems

Interestingly, a number of additivity questions are redaite the sense that they are either
all true or all false. This connection is particularly weltablished in the finite-dimensional
context [39[4D["41]: then, the equivalence of the (i) aditiof the minimum outputl-
entropy, the von-Neumann entropy, (ii) the additivity o thingle-shot expressiaft, (iii)
the additivity of the entanglement of formation, and (ivg thtrong superadditivity of the
entanglement of formation have been shown to be equivd@&r@0[41]. This equivalence,
besides being an interesting result in its own right, presidonvenient starting points for
general studies on additivity, as in particular the minimatput entropies appear much more
accessible than the classical information capacity.

In the infinite-dimensional context, the argument congegrequivalence is somewhat
burdened with technicalities. We will here state the mairt pgan equivalence theorem of
additivity questions concerning any pdit, 7> of Gaussian channels[26]. The following
properties (1.) and (2.) are equivalent and imply (3.):

(1.) For any state on the product Hilbert space and for all appropriately a@ist setsC,
andK, we have thdf
Ci(Th @ To, K1 ® Ka) = C1(Th, K1) + C1 (T, K2). (42)
(2.) For any state with (S o T1)(trz[p]) < co and(S o Tz)(tr1[p]) < oo
S(p, Ty @ Tp) > S(tra[p], Ty) + S(tr1 ], To), (42)

where for a channdl’ and) ", pip; = p

S(p,T) = inf ZPi(S o T)(pi)- (43)

3

17In the context of entanglement measures, additivity referthe property that for a number of uncorrelated
bi-partite systems, the degrees of entanglement simplypdd the total entanglement.

18This has to hold for all compact subséfy and 2 of state space for whichS o T;)(p) < oo for all states
p € K;, i = 1,2, and such tha€1 (11, K1), C1(T2,K2) < oco. Note that these assumptions are in particular
satisfied ifKC; and/C2 are defined by an energy constraint.
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(3.) For the minimal output entropies
Dl (Tl [ TQ) =1 (Tl) + 1% (TQ) (44)

where the bar indicates that in order to evaluate the mintmgdut entropy of ; ® 15,
the infimum is taken only over all pure statesuch thatS(trz[p]) = S(tri[p]) < =
and(S o (T1 @ T»))(p) < cc.

In particular, this means that once a general answer to ¢1(2.pwas known for Gaus-
sian channels, a general single-shot expression for tsictd information capacity of such
channels would be available, solving a long-standing opestipn. Moreover, it was proven
that the above implications hold true if one of the addijivibnjectures is proven for the
general finite dimensional cage [26].

5.2 Integer output entropies

For specific channels, the unconstrained minimal outpantropies for tensor products can
be identified for integety. Theseinteger instances of output puritiese not immediately
related to the question of the classical information cagafir which the limita ™\, 1 is
needed. However, they provide a strong indication of adtjtialso in the general case.
Notably, for the single-mode classical and thermal noissaelsT’,

Vo (T®™) = nuy (T) (45)

has been established for integeflL1]. The concept of entrywise positive maps also provides
a general framework for assessing integer minimal outptropies for Gaussian channels
[45], generalizing previous results. It is worth mentiapthat in the above cases the minimal
output entropy/, (T'), 2 < « € N is attained for Gaussian input states|[11].

5.3 Output entropiesfor Gaussian inputs

In all known cases Gaussian input states achieve the mirootaut entropy or attain the
capacity of Gaussian channels. Hence, one may be tempteglitwéthat this could be
true in general and thus consider only Gaussian input stiatasthe very beginning. In this
restricted settings, quite far-reaching statements conug additivity can yet be made. For
example, if one requires that the encoding is done entirefyaussian terms, the additivity
for minimal output entropies can be proven in quite some giite [42]. The Gaussian
minimal output entropis defined as

Vo.c(T) = inf(Se o T)(p), (46)
14
where the infimum is taken over all Gaussian states. Then ode that the minimal out-
put a-entropy for single-mode Gaussian chanrigls..., T;,, as in Eq.[[B) characterized by

Xi,...,Xp, and Yy, ..., Y,, ¥; > 0, and detX;] = def{X;,] for all 4, is additive for all
€ (1, 00). This includes the important case of identical GaussiancéksT,

Va.a(T®™") = nvg.q(T) 47)

for all n and alla € (1,00). Moreover, fora: = 2 this kind of additivity was proven for
arbitrary multi-mode Gaussian channels for whiet[ X;] # 0 [42].
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5.4 Equivalence of Gaussian additivity problems

The aim of this section is to make a first step towards proviagthe equivalence of additivity
problems|[3B, 40, 41] holds within the Gaussian world, wiareesources and quantities are
appropriately replaced by their Gaussian counterpartaceSall states in this section are
Gaussian and thus essentially characterized by their ieana matrices (except from the
first moments, which are not relevant, e.g., for their entemgnt content and their entropy),
we will for simplicity of notation use the covariance mattixas the argument of functions
which are supposed to act on density operators. That is, iverite T'(~) andS(y) meaning
T(py) andS(p,), with p., being the centered Gaussian state with covariance mmatret
us first define the quantities under consideration:

I. Gaussian entanglement of formatiorhe Gaussian version[43] of tleatanglement of
formation(EoF) [24] restricts to decompositions into Gaussian statthe probability
distribution in the decomposition is however not restdcte be Gaussian (although
there exists always an optimal decomposition with this prop[43]). As proven in
Ref. [43], we have

Eg(y) = degﬁ’:l {E(F)h > > EG(V)}

_ ®$iiEaﬂ72F2w} (48)

where E(I") is the entropy of entanglement of the pure Gaussian state ceNari-
ance matrix’, i.e., the von-Neumann entropy of its reduced state. Theesponding
decomposition contains only phase-space displaced wsrsibthis state. Obviously
this is an upper bound for the (unconstrainedjanglement of formatiof24], i.e.,
Ec(y) > Er(y) where equality holds at least for the case of symmetric tvealen
states (for which the reduced states are unitarily equitpld4]. For these state;
was proven to be additive [43]

n

Bo(®vi) =Y Ec(vi)=>_ Er(v), (49)
i=1

=1
and convex on the level of covariance matrices, i.e.,
Ec(M1+ (1= M12) < AEg(1) + (1 — N Eg(72) (50)
forall A € [0, 1].

Il. Gaussian capacityWe introduce the Gaussian counterp@its (7, K) of the single-
shot expressiod; (T, K) in Eq. [ZT) by restricting the input ensemble to be a set of
phase-space translates of a Gaussian state, distributeddam to a Gaussian distri-
bution. Evidently,C: ¢(T,K) < C1(T, K) and the question of additivity is, whether
for all Gaussian channels equality holds in

ZCLG(TiJCi) < Cl,G(@?:l T;, ®?:1/Ci) . (51)
i—1

As mentioned above, for the lossy channel we have indeed3fjat

C1.6(T,K) = C1(T,K) = C(T, K). (52)
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Gaussian MSW correspondendeollowing Matsumoto, Shimono, and Winter (MSW)
in Ref. [40], one can easily establish a relation between C; ¢, andv; . LetT : v —
X~vXT+Y be a Gaussian channel acting on systemswfodes. Then there exists a dilation,
i.e., a pure state ofi < 2n modes with covariance matriy and a symplectic transformation
S, such that

T(v)=Rla, 7 =50&v)5", (53)

where A and B refer to ann-mode andm-mode subsystem, and as bef¢1é 4 denotes

the covariance matrix corresponding to subsystenThis is nothing but the corresponding
principal submatrix. Replaciny by the singleton set of a fixed average Gaussian input state
with covariance matrix leads to a new quantity; ¢ (7, v), which is defined as

Cra(T,y) = (SeT)(v) — Ea(v) . (54)

This relates the Gaussian EoF to the capa€lty;. In fact, if G(T,K) is the set of all
covariance matriceg in Eq. [53) for whichy € K, then

Cra(T,K) = S 5([Ma) — Eg(T), (55)

which is the Gaussian analogue of the MSW correspondénieNiyeover, the simplicity
of the Gaussian EoF in EJ_{48) leads to a relation betwégrand the minimum output
entropy: ify,~’, andT are again related via EQ_{53), then

Eo(v) = inf (SoT)(3). (56)
() = wfEe(). (57)

Implications for Gaussian additivity problems&Jsing the above Gaussian analogue of
the MSW correspondence and following the argumentationef [39,[40], one can easily
prove that Gaussian versions of all the above additivitiestants would be implied by the
super-additivity of the Gaussian entanglement of fornmatioety be the covariance matrix
of a bi-partite Gaussian state consistinguddi-partite sub-system¥with respective reduced
covariance matricel/];. ThenE; is said to besuper-additivef

Ec(7) 2> Ea(l) - (58)
i=1
Note thaty is not assumed to be of direct sum structure. If EGl (58) hfdldall covariance
matricesy, then
(1) E¢ is additive,i.e.Eg(v1 ® v2) = Ec(1) + Ec(712),
(1) the constrained Gaussian classical capacity is aydite., equality holds in EqL(51),

(1) the minimal output entropy restricted to Gaussiapuits is additive, i.e.yy ¢(Th ®
Ty) = vi1,6(Th) + v1,¢(Th),

(IV.) E¢ is convex on the level of covariance matrices.

19each sub-system may in turn consist out of an arbitrary (Imitefi number of modes, jointly forming sub-
systemsA and B.
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Here, (1) is evident, and (11.), (I1.) are proven in closeadogy to Refs.[[39, 40]. Statement
(IV.) is shown as follows: consider two bi-partite covaammatrices; andy, of equal size.
There is a local symplectic transformatiSnconsisting out of 50:50 beam splitters), which
acts as .
T T+ Y12 .
S(v1 @ 2)S —5<%_72 ’71+’Y2) = T. (59)
By the implied additivity ofE; and its unitary invariané& we have thaklg (v, )+FEg(v2) =
E¢(T"). Moreover, super-additivity implies thdi. (I") > 2EG((W1 + 72)/2), resulting in
convexity for the casa = 1/2. By interpolation and continuity this can then be extended t
the entire intervah € [0, 1].
Remarkably, this implication has a simple converseE{f is additive and convex on
the level of covariance matrices, then it is super-additit@ see this, we introduce a local
symplectic transformatiofi = 1 ¢ (—1) with block structure as in E{59). Then, for every

r=( 2 5) (60)

we have

Eq(T)

[EG T) + EG(ere)] /2

(
Eq((T+0676)/2) = Eq(n1 ®72)
= FEg(n)+ Ec(12), (61)

Y

where the inequality is due to the assumed convexity andateefjuation reflects additivity
of E¢. Note that by the above result, Mg is not convex on covariance matrices, then either
Er # Eg or Ep is not additive.

6 Outlook

This article was concerned with the theory of Gaussian gquarommunication channels.
Such channels arise in several practical contexts, mosiriiauptly as models for lossy fibers.
Emphasis was put on questions related to capacities, wiiettlte best possible bounds on
the rates that can be achieved when using channels for thenaoioation of quantum or
classical information.

Though many basic questions have been solved over the Vagetr's, many interesting
questions in the theory of bosonic Gaussian channels aeatéy open. This applies in
particular to additivity issues: general formulae for thassical information capacity are
simply not available before a resolution of these issues: specific channels, a number
of methods can yet be applied to find additivity of output pesi. It may be interesting to
see how far the idea of relating minimbdentropies t@2-entropies as in Refl_[46] could be
extended in the infinite-dimensional context.

Then, there is the old conjecture that to take Gaussian dyesrdoes not constitute a
restriction of generality anyway when transmitting infation through a Gaussian quantum
channel. In the light of this conjecture, it would be inté¢ieg whether a complete theory

DEG(S(n1 @ 72)ST) = Eg(m1 @ 72) sinceS is a local unitary.
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of quantum communication can be formulated, restrictinthlto Gaussian ensembles and
Gaussian channels.

Finally, all what has been stated on capacities in thislantefers to the case of memory-
less channels. For Gaussian channels with memory, thdisiiuzan be quite different. For
example, notably, the classical information capacity eaefthanced using entangled instead
of product inputs([4]7,48]. It would in this context also béeiresting to see the program of
Ref. [49] implemented in the practically important case aSsian quantum channels.
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