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and N is the number of simulated data points. The accuracy of approximation for
the individual derivatives scales as E ~ N xmmlf where NN is the number of true data
points. The dominant effect depends on the order of approximation as well as the
dimension of the attractor, and whether the estimates for the derivatives are biased.
Alternatively, as we showed in reference [23], scaling properties of error estimates
can be used to estimate the dimension. If the order of approximation ¢ is known,

then Equation (17) can be turned around to give a relationship for the dimension.

ficiently accurate, we can use it to obtain statistical estimates that are more accurate
than those obtained directly from the data itself. There are several possibilities for
doing this. For example, suppose we wish to compute the dimension of an attractor,
and we are limited by the amount of available data. If we have a good model for the
data, we can iterate the model to obtain new “simulated data”. If the measure of
the simulated data is sufficiently close to that of the true data, then we can simply
apply standard algorithms to compute the dimension of the new time series. This
can similarly be done to compute quantities such as the Lyapunov exponents.

A central question is how much the the data can be extended and still produce
accurate estimates on a given scale. For short prediction times, the error of ap-
proximation is roughly £ ~ N~3. If we only needed to extend the data by a few
data points, we can expect these new data points to be faithful to the measure to
this accuracy. As we iterate the map further, although each estimate is only for a
short time, the errors in the distribution of the points may accumulate. We do not
understand how to estimate this in detail, but since the evolution of the measure
depends on the derivatives of the flow, we think that the accuracy will depend on the
accuracy for estimating derivatives. ¥ For local schemes the order of approximation
for the derivative is typically one less than that of the map itself. Thus, we hope
that averages computed in this way should also be accurate to this same degree of
approximation. These arguments are admittedly very vague, however, and need to
be made more precise, and backed up by numerical results.

Assuming that we can approximate the measure to order ¢ — 1, this implies that
we can generate roughly N ~ N?new data points and still remain faithful to the true
dynamics. We can then improve our estimate of the dimension by applying the usual
ball scaling algorithms to the newly generated points. Since there are now N? of
them, we can get a much better estimate. Of course, this involves more computation:
Nonetheless, if the computation is limited by available data rather than computer
resources, this implies that the analysis of a D dimensional attractor can be done as
accurately as a .n%m dimensional attractor using first order methods.

Similarly, we can use this same method to improve estimates of the Lyapunov
exponents. An algorithm for doing this is originally due to Wolf et al. [77], and
alternatives have been suggested by Eckmann and Ruelle [21,20] and Sano and Sawada
[66]. Since the Wolf algorithm involves manipulation of existing trajectories, while the
Eckmann/Ruelle/Sano/Sawada algorithm employs local linear maps, on the surface
it might seem to involve a higher order of approximation than the Wolf algorithm.
However, since the estimate of derivatives through a linear map is only first order, in
fact the order of approximation is the same. .

If a higher order approximation can be found, the accuracy of these estimates-
can be improved in two ways. First, the estimates of local derivatives become more
accurate. Second, by generating more data we can expect to get better statistics.
Assuming the local derivatives are independent, the error due to statistical fluctua-
tions goes as o N=Y/2 where o is the standard deviation of the local contributions,

D= lim ¢—— A 47

There are several problems with this method. First, the biggest potential improve-
ment comes about when ¢ is large. For this method to give a reliable estimate of the
dimension we must know the order of approximation a priori. Qur numerical work
so far indicates that it is difficult to achieve orders of approximation larger than two
reliably when D is large. Unless we can be certain in advance of achieving a given
order of approximation, we cannot estimate the dimension this way. Furthermore,
the statistical stability of an estimate of E is limited by the number of points in the
time series, and for a small time series statistics are not good. Thus, while checking
for the proper scaling is a good measure of self consistency, we expect that iterating
to generate “simulated data” will give superior estimates of the dimension.

4.3 Forecasting as a measure of self-consistency

Forecasting provides a hard test for the presence of chaos, especially when combined
with'the tests for the scaling properties expected from the error estimates of Section 3.
It is very unlikely to make forecasts with the statistical significance that we achieve
here by guessing at random. Although it is possible to construct counterexamples
that would appear very much like chaos by running high dimensional noise through
appropriate nonlinear filters, we doubt that such contrived examples are very likely.
To paraphrase Joe Ford, “If it walks like a duck, talks like a duck, quacks like a duck,
and even smells like a duck, then by golly, it seems pretty reasonable to assume it
really is a duck.”

5 Noise Reduction

In this section we introduce a new methed for reducing noise in a dynamical system.
The basic idea is nonlinear smoothing; once we can make forecasts, we can transport
different points to the same point in time and average them together, to reduce
the effect of noise. By applying this procedure recursively the reduction can be
substantial. The basic idea is schematically illustrated in Figure (11).

We will assume that the time series {z,} is of the form

13We thank Martin Casdagli for helping to clarify this point. Ty = Yt + Ny, (48)
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t-1 t t+1 Suppose we transport measurements from times {t — a,...,{+ 8} to time ¢. Since n;
is'independent, the joint probability distribution is
—_— j==B .
P(f(@i-a)y- s [ (eep)) = A T F(P(2enj = yeoj))s (50)

j=a

where A is a normalization constant and « > 0 and 8 > 0. If we assume that n; is
small we can linearize f,

L(P(ze = 9)) = AP((f(z2) = F())df (2)7) = AP((f(@e) = yera))df (2) ), (51)

where df (x,) is the derivative of f at z, and A’ is a normalization constant. This
approximation depends on the assumption that the noise is small compared to the
nonlinearities of f, so that the dynamics is locally linear (so equiprobable surface re-
main ellipsoids under transformation, as shown in Figure (11)). Combining equations

(49), (50), and (51) gives

Figure 11: Nonlinear smoothing. The circles represent noisy measurements of a de-
terministic trajectory at three different times. As successive measurements are trans-
ported to the same point in time, the associated noise probability distributions distort.
By weighting the values of the transported points correctly, they may be averaged
together to produce a better estimate of the true value y;. The estimates can be
improved by iterating this process.

j=—0 . .
P(f*(2tma)s-- s [ P(2140)) ™ mhﬁ I Eemi)=9ldP @I 272 (59

i=a

We want to estimate y;. A standard way to do this is to make a maximum
likelihood estimate, which amounts to assuming that the particular sequence of fluc-
tuations that we observe are the most likely ones, so that they lie at the maximum of
the joint probability distribution. We choose our estimate Y, to force this to be true.
where 141 = f(y:), and the sequence n; is uncorrelated, with (n;n;) = 0?6;. We Since log P has the same maximum as P, we can more conveniently enforce this by
assume that n; is unpredictable, and values at different times are independent.: We setting .&.%MM = 0. Setting Y; = y; in Equation (52), differentiating, and solving for

will also assume that {n;} has a symmetric Gaussian distribution, Y, vields

Pny) = —meert/20", (49) ‘ Y= X 01 3 0;f(zm;) (53)
2r0 , . £

This assumption is convenient, but the final result does not depend on it; for example,  vhere
our numerical results demonstrate that our method works quite well for noise with'a
bounded uniform distribution.
A standard method for reducing noise is to simply average together nearby points.
For this to be effective, the average must be taken over a very short time interval,
since otherwise the intrinsic dynamics of the signal dominate the noise. But if we can
forecast accurately we can take the dynamics into account, and average over much
longer periods of time. As we shall see, this is particularly effective in chaotic systems:.
We want to transport points at different times to the same time, as illustrated in
Figure (11). Conceptually, we are pulling-back and pushing-forward the probability
distribution of the noise, under the action of the deterministic dynamics f. A prob-
ability distribution has an induced transformation under the mapping f that we will
denote f, i.e.,

0; = (1 (e df (20-) -
©; is a d x d symmetric matrix that depends on z;_;. It contains weighting factors
that depend on local expansion and contraction rates, and take into account distortion
of the noise as it is transported to different times. The directions in which the
noise distribution is compressed contain more useful information, and receive higher
weights. ‘

To implement this procedure we have to estimate both f#(z;_;} and df#(z,_;). In
practice, because of nonlinearities it is wise to keep the smoothing times short by
keeping « .and § fairly small. Further reductions are made by applying Equation
(53) recursively. Since this makes it possible to keep each step short, this minimizes
the effect of nonlinearities. With every pass we reduce the noise level, so that the
local linear assumption of Equation (51) becomes increasingly valid. Thus once the

P(z141 = yes1) = f(Pz: — y2))- algorithm starts to converge, further convergence is guaranteed. The recursive use of
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this algorithm is reminiscent of the “pull-back” algorithms for estimating Lyapunov
exponents [4,69].

When we know the map exactly, with even a small amount of data and fairly large
noise we can reduce the noise almost down to machine precision. To demonstrate this;
we have applied this to the Hen6n map, as shown in Figure (12). Note that we achieve
a noise reduction of roughly 10, more than 100 decibels. When the true map is not

Similarly, as we move j steps from the end toward the center the noise is reduced by
roughly A7, where A, is the Lyapunov number associated with the unstable manifold
(and is greater than one).

So far we have assumed that the noise was added to an ideal trajectory, and had
no effect on the dynamics. Suppose that instead the noise is coupled to the dynam-
ics, and is included in computing the next state. In this case, there is no unique
“true” trajectory. This leads to the shadowing problem: Is every noisy trajectory
“shadowed” by a nearby deterministic trajectory? For hyperbolic systems, Anasov
and Bowen independently proved that this true [1,8]. Although Anasov and Bowen
discussed only hyperbolic systems, recently Hammel et al. [42] have applied a mod-
ified version of the Anasov-Bowen algorithm to simple systems such as the Henén
map, demonstrating that they can usually find shadowing trajectories close to noisy
trajectories. Although they posed the problem in a different context, their work can
be viewed as noise reduction. ' Qur method is reminiscent of the Anasov-Bowen pro-
cedure, but it is applicable not only to non-hyperbolic systems, but even non-chaotic
systems. Our method is also easy to implement in any dimension.

It is ironic that it is much easier to remove noise from a chaotic time series than
from a regular time series. Without exponential expansion and contraction, according
to the central limit theorem, smoothed values only become more accurate according to
the square root of the number of data points, in contrast to the exponential behavior
of chaotic systems. The number of points needed to achieve a given level of noise
reduction for regular dynamics is therefore much larger than for chaotic dynamics.

The limit to noise reduction is usually given by the accuracy for approximating f.

known, this is limited by forecasting accuracy. Still, even when we approximate the 107 ¢ E
map we have been able to reduce the noise by a factor of 1000 or more. 3 _ 3

As is apparent in the figure, points near either end of the time series are not 107 E E
smoothed nearly as accurately as those in the middle. The reason is that in a chaotic . 3 ]
system the pulled-back values are accurate along the unstable manifold, while the 10 3 E
push-forward values are accurate along the stable manifold. Points near the beginning oF .m
of the time series have no history, and therefore noisy fluctuations along the stable 10 E 3
manifold cannot be reduced. Similarly, points near the end of the time series have 107 m. N
no future, and fluctuations along the unstable manifold cannot be reduced. For the £ E
Henén map, for example, as we move j steps from the beginning of the time series 10-°L -
toward the middle, the noise is reduced along the stable manifold by a factor of E E
roughly A, ™, where A, is the Lyapunov number associated with the stable manifold. 0L 'M
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Figure -12: The noise reduction technique of Equation (53) applied to the Hendn
map. The map was iterated at double precision, generating a “clean” time series
{y:};t=10,1,...,200. We then added pseudo-random numbers {n;} to each point,
forming a noisy time series z; = y; -+ n¢. 1, is uniformly distributed, with a variance
roughly 0.1% of that of y,. The logarithm of |n,| is plotted at the top of the figure.
Below it we plot log |Y; — 4|, where Y; is the smoothed value after applying Equation
(53) 10,000 times to all 200 points, using @ = B = 3, and using the known map to
compute f7 and ©;.

19Recently this approach has been modified by E. Kostelich and J. Yorke to make it more practical
(private discussion).
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Estimates of © are not as important, since it is just a weighting matrix. As long as the
eigendirections are roughly correct, we get a net noise reduction on every iteration:
The approximation error for f is helped by the fact that the directions where we need
accuracy are coniracting; we need to forecast the stable manifold accurately forward
in time, and the unstable manifold accurately backward in time. There is little decay
of predictability with time, and forecasts may even improve! We do not have to fight
the exponential divergence of trajectories to reduce noise.

The main numerical problem comes from homoclinic tangencies, i.e., places where
the stable and unstable manifolds are in the same direction. In Figure (11), for
example, this would mean the two ellipsoids have the roughly the same principal
axis. An exact homoclinic tangency causes the same problem that occurs at the ends
of the time series - noise reduction is only possible along one direction. In general,
however, homoclinic tangencies are not exact, and even if they are exact, for small
@ or 3 the orientations may vary, so that some combinations of & and 8 give better
results than others. Also, the reduced noise levels elsewhere in the time series are
transmitted to the bad points, and if they are strong enough they can overcome the
instabilities.

Nonuniformities may also cause similar problems, if the signs of the eigenvalues
of © are atypical. For example, if one Lyapunov number is greater than one and the
other is less than one, at a point z; where both eigenvalues of 8, are greater than
one, the push-forward of P(xz;) will expand in both directions. This can be cured by
reaching further into the past, increasing  until ©, acquires an eigenvalue less than
one.

criterion for the estimation accuracy. «; are parameters for F, and G is a map that
changes o, i.e., a learning algorithm. z, y and i can be either continuous or discrete.
For-a forecasting problem, for example, ¢ corresponds to time, z is the current state
zy and y is a future state, y; = x4y 7.

Neural nets correspond to a particular class of functional forms for F and G.
Although this form was originally motivated by biology, there is no reason to be
constrained by this in artificial intelligence problems, as reflected by many recent
developments in this field. Neural nets have had success in certain problems that can
be solved by learning with a teacher, for example, text to speech conversion [67] or
finding gene locations on DNA sequences [48]. Lapedes and Farber have also shown
that neural nets can be effective for forecasting [49].

, However, as recently pointed out by Omohundro [58], alternative approaches that
depart significantly from the usual form of neural nets may be computationally much
more efficient. Our approach to forecasting provides a good example of this; our meth-
ods give equivalent or more accurate forecasts than the neural net of Lapedes and
Farber [49], and are several orders of magnitude more efficient in terms of computer
time. Furthermore, since the computations can be performed in parallel, we expect
that this speed discrepancy will persist even with future parallel hardware. Omo-
hundro has pointed out that similar methods may be employed for other problems,
such as associative memory, classification, category formation, and the construction
of nonlinear mappings. Many aspects of the methods that we have proposed here are
applicable to this broader class of problems.

Although we have assumed that z and y are continuous, with the addition of
thresholds our methods are easily converted to the discrete domain. Cur work, taken
together with that of Lapedes and Farber, makes it clear that the neural network
solves problems by surface estimation. They show that the same is true in the discrete
domain, except that answers are obtained by “rounding” the surface, truncating to
a discrete value. Generalization occurs through the extrapolation of the surface to
regions in which there is no data [47]. There is no a priori reason to constrain the
functional representation to those that are currently popular in the study of neural
networks.

Radial basis functions provide a particularly promising possibility. One of the key
properties of the two layer tanh network is localization; the composition of two tanh
functions forms a well-localized bump, and by adding these together it is possible to
represent arbitrary functions {47]. Radial basis functions are designed to be inter-
polants with good localization properties, and so should be ideal replacements for the
tanh. Since their parameters can be fit through linear least squares, unique solutions
for radial basis functions can be found very quickly. Furthermore, as recently shown
by Casdagli [12], under favorable circumstances radial basis functions can achieve
orders of approximation as high as six.

9 = Fz,e) (54) Clearly these possibilities deserve more investigation.
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that minimize ||y; — §i||, where § is an estimate of y, and the metric || || provides a

6 Adaptive Dynamics

There has been a great deal of interest recently in solving artificial intelligence prob-
lems with adaptive networks such as neural nets [65,15] and the classifier system [44].
Although on the surface the straightforward approximation techniques that we em-
ploy here seem quite different from neural nets, the underlying principles are actually
much the same. However, since our representations are more convenient numerically,
fitting parameters is hundreds of times faster.

Forecasting is an example of what is often called learning with a teacher. The
task is to predict “outputs”, based only on “inputs”. For forecasting the input is the
present state and the output is the future state. The record of past states provides
a set of known input-output pairs which acts as a “teacher”. The problem is to
generalize from the teaching set and estimate unknown outputs.

We can restate the problem more formally as follows: Given an input z; and an
output y;, we want to find maps F and G of the form

I
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previously available only in numerical experiments to the analysis of data in real
experiments. Furthermore, when it is possible to achieve higher orders of approxima-
tion, it becomes possible to extend the available data and obtain much more accurate
results than would otherwise be possible. We have given some suggestions for this,
but many questions remain to be investigated.

The ability to approximate nonlinear dynamics naturally leads to a method for
reducing external noise through nonlinear averaging. When the dynamics are known
exactly, this technique makes noise reductions of as much as ten orders of magnitude
possible. When the dynamics must be learned the limitation on this technique comes
from the the accuracy of the model. However, for low dimensional systems with a
modest number of data points we can produce noise reductions of several orders of
magnitude. Surprisingly, noise reduction is much easier for chaotic motion than for
regular motion.

All of the methods discussed above work well for low dimensional deterministic
chaos. When the dimension is low they give results that are orders of magnitudes
better than those of standard linear methods. However, they lose their effectiveness
when the dimension is too large. The limits can be estimated through the error
estimate of Equation (34). As seen from this equation, they also depend on the
method used: For a given number of points higher order approximation is more
accurate than low order approximation. Of course, if we have extra information, such
as the functional form of the dynamies, it may be possible to overcome the constraint
of large dimensions.

"The methods we have described here are new and not fully explored. We anticipate
that there will be considerable progress in this area in the near future.
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We urge the reader to use these results for peaceful purposes.

7 Conclusions

By assuming that a random process is produced by deterministic chaos, finding a
good model reduces to two parts: (1) Finding a state space embedding that maximizes
determinism, and (2) fitting a nonlinear functional form to the map that sends current
states to future states.

The importance of the first problem should not be underestimated. The usual
time consuming procedure of searching for a good embedding by trial and error is
far from optimal, both because it is time consuming and because the results are not
necessarily ideal. Some improvements on this have been suggested by Fraser and
Swinney [30] and by Broomhead and King [11]. We have suggested an improvement
on the technique of Broomhead and King which eliminates the last free parameter.
We intend to address this problem in more detail in the future.

The next problem is to approximate the dynamics from the data. The primary
approach we investigate here is approximation as a discrete time map, which has the
advantage of being convenient and fast. Approximation in differential terms may.
promise more accuracy, however, and we intend to compare these two approaches'in
a future paper. In either case, the problem boils down to approximating the graph
of a nonlinear function. Success depends on picking a good representation. There
are two basic approaches, global and local. Global approximation is convenient, but
unless the representation is well matched to the map it may not produce goad results,
especially since many of the standard nonlinear representations undergo an explosion
of parameters as the dimension increases. Local approximation has the advantage
that it is less dependent on representation, and is guaranteed to get better as the
number of data poiats increases. When used in conjunction with a data structure
such as the k-d tree, it can be quite fast. The best approach depends on the details
of the problem, such as the nonlinear function being approximated, the number of
data points, ete.

An advantage of formulating the forecasting problem in the language of determin-
istic chaos is that it makes it possible to derive error estimates. These estimates are
couched in terms of properties of the dynamics, such as the Lyapunov exponents arid
the dimension, the length of the data set, its signal to noise ratio, and the extrapola:
tion time. We arrive at the conclusion that iterative forecasts are better than direct
forecasts, i.e., it is better to make long-term forecasts by approximating the dynam-
ics for a short time and iterating rather than approximating directly. The iterative
approach takes advantage of the recursive form of the higher iterates of dynamical
systems. With the iterative approach approximation errors grow at the same rate as
errors due to uncertainty in the initial state, t.e., they grow exponentially according
to the largest Lyapunov exponent. These results are derived in the limit as B —s 0;
we have observed some counterexamples. Note that in order to study the behavior
of direct forecasts we had to introduce the new concept of higher order Lyapunov
exponents.

Having a model of the dynamics extends all the numerical techniques that were




