Efficient Estimation of Volatility
using High Frequency Data

Gilles Zumbach?, Fulvio Corsi?, and Adrian Trapletti®

Olsen & Associates
Research Institute for Applied Economics
Seefeldstrasse 233, 8008 Ziirich, Switzerland.

phone: +41-1/386 48 48 Fax: +41-1/422 22 82

February 21, 2002

Keywords: volatility estimators, high-frequency data, incoherent price formation, daily volatility.

Abstract

The limitations of volatilities computed with daily data as well as simple statistical considerations strongly
suggest to use intraday data in order to obtain accurate volatility estimates. Under a continuous time
arbitrage-free setup, the quadratic variations of the prices would allow us, in principle, to construct an ap-
proximately error free estimate of volatility by using data at the highest frequency available. Yet, empirical
data at very short time scales differ in many ways from the arbitrage-free continuous time price processes.
For foreign exchange rates, the main difference originates in the incoherent structure of the price formation
process. This market micro-structure effect introduces a noisy component in the price process leading to a
strong overestimation of volatility when using naive estimators. Therefore, to be able to fully exploit the
information contained in high frequency data, this incoherent effect needs to be discounted. In this contri-
bution, we investigate several unbiased estimators that take into account the incoherent noise. One approach
is to use a filter for pre-whitening the prices, and then using volatility estimators based on the filtered series.
Another solution is to directly define a volatility estimator using tick-by-tick price differences, and includ-
ing a correction term for the price formation effect. The properties of these estimators are investigated by
Monte Carlo simulations. A number of important real-world effects are included in the simulated processes:
realistic volatility and price dynamic, the incoherent effect, seasonalities, and random arrival time of ticks.
Moreover, we investigate the robustness of the estimators with respect to data frequency changes and gaps.
Finally, we illustrate the behavior of the best estimators on empirical data.
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1 Introduction

\olatility enters as an essential ingredient in many financial computations, like portfolio optimization, option
pricing or risk assessment. Although these computations depend critically on the value of the volatility, the
estimation of volatility is often done using daily data. Yet, as the volatility measures intuitively “how
much the prices jitter”, there is a gain in using data at higher frequencies. The relevant statistical concept
corresponding to our intuition is the minimal sufficient statistic: this is the smallest subset of empirical
values needed to evaluate a statistical estimate without loosing information. As a simple example, let us
consider a random walk with constant drift g and volatility 0. Given one realization of the random walk,
what are the minimal sufficient statistics to estimate p and o? For the drift y, the answer is that only the start
and end points of the random walk are needed. This implies that there is no gain in using high frequency
data for estimating the drift. For the volatility o, the answer is that the absolute value of every increment is
needed (there is no information in the sign of the increments regarding the volatility). This means that all the
increments help in getting a better estimate for the volatility, and any thinning of the original data implies
a loss of information. Hence, to estimate volatility of a random walk, we should use data at the highest
frequency available, namely tick-by-tick data. Under the more general continuous time arbitrage-free setup,
a similar result holds [Andersen et al., 2001b].

Although these theoretical results provide a good hint about the best estimator, the actual data differ in many
way compared to the simplest random walk model. A first “naive” estimator for the daily volatility o using
tick-by-tick data results from
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where the sum covers one day of data, n is the number of ticks in this day, and the return r(j) is the
difference between two consecutive logarithmic prices. This estimator is the best possible estimator for a
random walk without drift. Yet, for empirical foreign exchange (FX) data, this estimator is very strongly
biased: the mean o2 value is roughly three times larger when compared to the standard deviation of daily
returns. This bias originates in the microstructure effects that start to dominate the evolution of prices at the
very high frequencies. In short, some time is needed for the market participants to exchange information
about their views of the prices, and to reach a consensus. At very short time intervals, the price process
is better described by a distribution of quotes around a consensus price, and this quote distribution reflects
the incoherence between the traders. According to [Corsi et al., 2001], we call this effect the incoherent
price formation process, and, in the context of volatility estimation, this effect has first been analyzed by
[Zhou, 1996]. A process describing well the tick-by-tick empirical prices is a random walk, plus an additive
noise term describing the different opinions, or the incoherence, of the market participants. This additive
noise induces a strong negative first autocorrelation of the order of -40% for the tick-by-tick returns, and
also the strong bias in the naive volatility estimator 1. Because of the magnitude of the incoherent term, this
effect clearly has to be discounted.

Many possible volatility estimators that discount for the incoherent effect can be constructed. Then, we
are left with the problem of comparing the different estimators in order to select the best one. The usual
comparison criteria are that the volatility estimators should return positive values and have a small bias and
variance. Moreover, we would like to have a robust estimator for different tick rates, including possibly
week-ends and data gaps. Finally, as we are dealing with tick-by-tick data, the estimator has to be numeri-
cally efficient, both in terms of memory requirement and computational time. As the volatility of empirical
data is an unknown quantity, we cannot assess the quality of the different estimators directly using financial
data. Therefore, we have to perform simulations, using for example ARCH like processes, where the actual
volatility is known and can be compared to the estimated volatilities. In this comparison, we have also
included two standard volatility measures using daily data, namely risk metric and the squared value of the
daily return. In this way, the improvement resulting from using high frequency data can also be assessed.



In this paper, we discuss the volatility o in the text, but all the definitions are given for the variance o?.
Similarly, most statistical quantities about the volatilities are indeed computed with the variance o?. For
example, an unbiased volatility estimator means indeed E[02] = 62 where 62 is an estimator for the square
volatility and o? is the expected variance. The reader should be aware of this potential difference between
the text and the formulae. This discrepancy is customary in the literature and originates in the quadratic
definitions for the variance whereas intuitively one want a quantity homogeneous (of degree one) with the
return.

The notation we are using follows [Zumbach and Miiller, 2001]. A time series is denoted by a single letter,
like x. The value of a time series at a given time t or tick j is denoted with parenthesis, like x(t) or x(j).
The time for the j-th tick is denoted with t(j). The parameters are between square brackets, like o[At] (for
a time series) or o[At](t) (for a real number). We will use the function “positive part”, which is the function
(x)" = max(x,0).

This paper is organized as follows. Section 2 introduces the model for the price process with the incoherent
term, and then all the volatility estimators we are investigating. Section 3 is devoted to the Monte Carlo
investigations of the various estimators and of their robustness with respect to seasonality. Analysis of
empirical data is done in section 4, in particular to validate the model presented in section 2. The conclusions
are presented in section 5, with our best estimate for computing the volatility.

2 Definitions of the volatility estimators

2.1 Price process with an incoherent term

In order to motivate the definitions of volatility we use, we describe here briefly the process for the tick-
by-tick prices developed in [Corsi et al., 2001]. The price evolution is described in “tick time” with an
integer index j. The time increment process &t(j) is described by another process. For example, for the
Monte Carlo simulations below, the time increments are taken as a simple Poisson process (i.e. drawn i.i.d.
randomly from an exponential distribution).

The observed logarithmic prices x(j) are given by
x(J) =X() +u(j) @)

where X(]j) is an unobserved “true” price, which follows a (continuous) diffusion process. The incoher-
ent term u(j) is assumed to be an i.i.d. white noise component with zero mean and variance n?, u(j) ~
i.i.d.(0, n?). No other assumption on the distribution of u is made. The simplest model for X is a random
walk, with

X(j) =X(i—1) +F(j) )
with the return F(j) ~ i.i.d.(0, ). For this process, the tick-by-tick observed return is

r(J) =x(1) =x(j=1) =F(j) +u(i) —u(j -1) 4)
and the k-ticks return is

re(J) =x(J) =x(j =k) = fi(j) +u(j) —u(j = k) . ®)

The u terms in these equations induce the strong deviation at short time intervals from the usual random
walk behavior. The variance for the observed tick return is

E[rZ] = 0%k + 2n? (6)



and the lagged correlation for ry is
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For typical FX data, the empirical value of n? is of the order of 202, meaning that at the tick time horizon,
the incoherent term quantitatively dominates the random walk component. Therefore, when computing
volatilities at very short time horizons, this term has to be accounted for. With time aggregation, the random
walk component F[At] = X(t) — X(t — At) scales as E[f?[At]] ~ At o2 whereas the incoherent term has a
trivial scaling E[(u(t) — u(t — At))?] ~ 2n2. At the daily time horizon, the random walk dominates and the
incoherent effect can be neglected.

Model 2 implies that at very small time intervals, we do not have a random walk with “a” well defined price,
but instead a distribution of prices around some “consensus” mean price. This is a departure from most
of the current models that assume a fixed price at each point in time. Similar models have already been
developed by [Moody and Wu, 1997, Moody and Wu, 1998, Zhou, 1996]. In some sense, this is similar to
the paradigm shift from classical mechanics to quantum physics, where a description of point particles is
replaced by a probabilistic description with the associated uncertainty. The fundamental physical constant
measuring the uncertainty is h, and the equivalent in the finance world is played by the spread.

Model 2 also differs somewhat from the model process used in [Zhou, 1996]. We are using a description in
tick time, with a constant volatility between ticks given by o. Zhou uses an underlying continuous process
in physical time with a constant volatility o, observed at the tick time t( j). For the Zhou model, the volatility
between ticks is E[r?(j)] = (t(j) —t(j — 1))o?, namely is proportional to the time elapsed between ticks.
This difference leads to different analytical results, for example in the variance for the volatility estimator.
An empirical analysis of the time series for the hourly volatility, the number of ticks and the (hourly)
volatility per tick shows that the volatility per tick is roughly constant, and that the volatility is proportional
to the number of ticks (see section 4). This indicates that our model provides a better description of the
observed empirical data.

Due to the above random walk scaling, the volatility and the volatility estimators depend on the time horizon
at which they are measured. It is more convenient to remove this scaling and to always report the volatility
at a reference time scale, which is usually taken to be one year. This is done for example with the definition
of the naive estimator as

o%[At,8t] = % %Zrz[ét](t) (8)

where the sum is over a time interval At, n is the number of terms in the sum, and 1y denotes one year. In this
way, the volatility is at leading order independent of the parameters At and &t, namely E[o2[At, 8t]] ~ 62, and
is numericaly comparable to the volatility of the yearly price changes. This discounting of the measurement
time horizon &t is called annualization. All the definitions below are directly annualized, including the
tick-by-tick definitions, so that all volatilities can be directly compared regardless of the parameter values.

In all the definitions below, we assume that the return r has a zero expectation. As we are working with
short time intervals, typically of the order of 1 day, this is a good assumption. Consider for example a time
series with a mean annualized drift pann of 10% and an equal annualized volatility 04y, of 10%. At the daily
level At = 1d, we obtain p[At] = (At/1y)- Uan and o[At] = y/At/1y Oann. Because of the different scalings
between the mean and the standard deviation, the volatility dominates the mean by a factor /260 ~ 16
at the daily level, and the mean can be safely neglected. Should the zero expected return assumption not
be valid, or should we be interested in longer time intervals, the modifications in the definitions below are
straightforward.



2.2 \olatilities using daily data

Many definitions for measuring volatility using daily data exist. The simplest volatility estimate is the
squared value of the daily return

{ r[d](t) }*. ©)

From the statistical point of view, this estimator is very bad. For example, for a Gaussian random walk,
the root mean square error (RMSE) of r2[1d] is 141% o2. Yet, this definition has the advantage not to be
damped by an average with the past history.

The most accepted volatility estimator using daily data is the RiskMetric definition

ORiscmeric(t) = H Ofigaveric(t — 1d) + (1 — ) r’[1d](t) (10)

with the constant coefficient 4 = 0.94. This formula corresponds to an exponential moving average with a
characteristic time 1 given by the formula p = exp(—1d/T1), or T ~ 16 business days ~ 3 weeks. This value
can be seen as a compromise imposed by daily data between having a good statistical estimator, for which
a longer time interval is needed, and the short term dynamic of the volatility, by which most information
is in the very recent past. Because of this fundamental trade off, the value u = 0.94 provides reasonable
estimates, regardless of the time series.

More complex definitions can be used, for example a GARCH(1,1) process. Yet, these definitions in-
volve more parameters, which are depending on the time series under consideration. For example, the
GARCH(1,1) process involves (implicitly or explicitely) the mean volatility among its parameters, a quan-
tity that strongly depends on the time series. Beside, the quantitative improvement over RiskMetric is
typically too small to justify the added complexity and parameters. For these reasons, we have restricted our
empirical investigations using daily data to the simplest RiskMetric and |r[1d]| formulas.

2.3 The regular time series volatility

The standard realized volatility estimator is defined by summing squared returns of an artificial regular time
series of logarithmic prices xgrs(t). The usual definition for the annualized (realized) volatility over a time
interval At is

Rrbt M) = = Y ) (11)
t—At+ot<t/<t

where the annualized return is defined as

rigt)t) = ﬁ (Xrrs(t) — Xrrs(t —dt)) (12)
n = (13)
t—THa<t'<t
and with

e Xrrs: a Regular Time Series (RTS) spaced by ot of (logarithmic middle) prices. This quantity needs
to be computed with some interpolation procedure from the irregularly spaced high-frequency tick-
by-tick price time series ().

e r[0t]: the annualized returns, observed over a time interval of size &t.



e 1y: the one year normalization period.
e At: the length of the moving window over which the volatility is computed.

e n: the number of return observations in the interval At. In the usual case of non-overlapping return
intervals, the number of observations is n = At /ét.

This definition involves two time parameters, At and ot.

As several studies have shown (see e.g. [Andersen et al., 2001a, Corsi et al., 2001]), this estimator is strongly
biased upward for small return time interval &t due to the incoherent component in the price process. To
achieve unbiasedness, the lower bound for the value of the parameter ot should be of the order of 30 min-
utes to 2 hours for typical FX data [Andersen et al., 2001a]. This limits the usefulness of such an estimator.
On the other hand, it is possible to filter the incoherent component of the (logarithmic middle) prices.
Then, we can use the estimator 11 on the filtered price series with small time intervals ot, as suggested
in [Corsi et al., 2001]. Such a filter can be based on an MA(1) representation for the return which can be
inverted to lead to an EMA filter with a parameter depending on the lag one correlation for the tick-by-tick
return. [Corsi et al., 2001] shows that even for very small return time intervals &t, the estimator 11 has al-
most no bias. In the empirical analysis in section 4, we have included GEUS evaluated with unfiltered prices
and 30 minute returns, and o4 evaluated with filtered prices and 5 minute returns.

2.4  The tick-by-tick volatilities
2.4.1 The Zhou volatility

As far as we know, [Zhou, 1996] was the first author to notice the problems induced by the incoherent effect
when estimating volatilities from high frequency data and to propose an estimator of volatility that corrects
for it. The Zhou estimator is given by

oSO =2 = 5 20)+ 2 (i~ k) (14)
t—At<T(j) <t

where the sum Yy is over all ticks between t — At and t. The return ry is given as a k-tick return (see
Eq. 5). For k > 1, this definition uses overlapping returns (the sum is over all the ticks). Essentially, the
“naive” estimator rZ ~ ka?+2n? is corrected by the term 2ry(j)r(j —k) ~ —2n2. Yet, because of the large
cancellation between the two estimators for the variance and lag—k covariance, the resulting estimate may
be negative. The non positivity of this definition is a serious drawback, particularly if the number of ticks in
the interval At is not large enough. This can be corrected by taking the positive part of the volatility, but a
zero volatility is not good either.

Another drawback of this formula is to be computationally cumbersome. Because the humber of ticks in
the interval At is not constant, a stack of returns and times has to be kept. This implies that the memory
requirement is not fixed, and grows with At and the tick frequency. This problem can be solved when the
values of the estimator are needed only at regular time points separated with T, say every hour, and with
At = pt with p an integer. In this case, the estimator can be written as a double sum over p and 1, and the
memory requirement is fixed to one stack of length p. These fine points are very important when dealing
with tick-by-tick data as memory allocation is very costly time wise compared to a few multiplications and
additions.



2.4.2 The Zhou volatility with covariance estimated on a longer sample

The previous estimator can be changed by measuring the incoherent correction on a much longer time
interval. This should reduce the variance, and therefore the probability to get negative values. In this
direction, several variations of the Zhou estimator can be written. One possible estimator is the following:

( > rﬁ(j“M > rk(J')rk(J'—k)) (15)

t—At<t(j)<t n[At](t) —AU<t(j)<t
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where n[At](t) is the number of ticks between t — At and t. Essentially, the ratio Covariance[At']/n[At']
measures the incoherent term per tick over the interval At’. The value for the parameter At’ needs to be
chosen large enough to obtain a good estimator, typically of the order of a few weeks. Again, this formula
might give negative values. We call this estimator Zhou with long covariance 02, ., ¢

Other estimators can be defined, for example
2 ! 1y 1 ! 20
OALATKI(M) = g (1+20[At7M) > ri(d) A7)
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where p[At'] is the lag k correlation measured on the interval At’. The seasonality analysis of empirical data
shows that the covariance is constant whereas the variance has a dependency with respect to the time in the
week (see section 4). This induces a seasonality in the correlation, and therefore an undesired dependency
with respect to the parameter At’ in the volatility estimator. For this reason, we have not further investigated
this estimator.

2.4.3 The quadratic variation

As the incoherent filter developed in [Corsi et al., 2001] allows us to remove the incoherent component, we
can use a “naive” estimator based on squared returns of filtered prices. We call this estimator “quadratic
variation” as it corresponds to the usual quadratic volatility estimator for a random walk

ly 1 .
ooy (D, K(t) = Ak 2 ) (19)
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where r¢ x is the k-ticks apart return computed from the filtered prices x¢. For the volatility estimate, this
corresponds to pre-whitening the prices, and then to compute the volatility of the resulting time series. As
the objective is to compute the volatility of the filtered data, no recoloring, or correction of the volatility,
needs to be done.

2.4.4 The filtered Zhou definitions

As shown in section 3, the variance for the Zhou estimator depends directly from the incoherent noise level.
In order to reduce its variance, we can first apply an incoherent filter, and then use the Zhou estimator to
compute the volatility. We denote this estimator as “filter + Zhou™.



The filter as presented in [Corsi et al., 2001] is not correctly specified as it assumes a constant volatility per
tick. Yet, for empirical data, the volatility per tick shows a seasonality (see section 3). This implies that
part of the first lag negative correlation remains after filtering. By using a Zhou estimator on filtered prices,
the remaining first lag correlation is correctly discounted (but further lagged correlations induced by the
filter remain). This correction is important at short time horizons, below one day. In a broader context, this
approach corresponds to pre-whitening the data, then to compute the relevant quantity, and finally to recolor
the estimate [Andrews and Monahan, 1992].

2.4.5 The bias corrected Zhou volatility

If the diffusion process X(j) (see Eq. 2) does not have a constant volatility 62, then the Zhou estimator 14
is biased for k greater than one. This bias essentially originates from the use of overlapping returns in the
sum of Eq. 14. For the case k = 2 some simple algebra reveals that the bias is introduced by the first and last
term in the sum of Eq. 14 (see also [Zhou, 1996], p. 48 for a more detailed discussion).

Hence, a bias corrected Zhou volatility estimator may be defined by appropriately adjusting the estimator
for the terms that introduce the bias. To simplify the formula, we only take into account the two terms which
bias the Zhou estimator with k = 2. The bias corrected version is then given by

OBrouseclBLKI(0) = OBl KI(1) + 3V [ALKI() (20)
VKO = o (120 +2ra(iarsia— D}~ {2000) + 2ra(i)raCio - D)) @D

where 8V [At,k](t) denotes the bias correction and t(ja) and t(jp) are the times of the ticks arriving im-
mediately before t — At and t, respectively. Obviously, the bias corrected Zhou estimator is equal to the
(uncorrected) Zhou estimator if k = 1. Furthermore, it is easy to show that the estimator 20 is unbiased for
k = 2. For k greater than two, the estimator 20 is still biased, but the bias correction eliminates the largest
terms causing the bias (all other terms are multiplied by a factor of (k —i)/k, 2 <i <k—1 instead of the
factor (k—1)/k in Eq. 21). Also note, that the annualization factor in Eq. 21 and 14 is only correct, if there
are ticks arriving exactly at times t — At and t. In our implementation, it is ensured that the volatility is
always computed on the time interval [t(ja),t(jo)] and the volatility estimator is additionally corrected by a
factor At/(t(jp) —t(ja)). This last correction is important in case of gaps.

2.4.6 Other definitions for the tick-by-tick volatility

The sensitivity of the volatility estimators with respect to the incoherent term is introduced by the term r? in
formula 14. A way to avoid this term is to take a product of overlapping returns, but at different time points,
namely to “alternate” all the time points. This leads to the formula

ly 1 L :
Oaternetel O] = ﬁm n(pri—m)  with1<m<k. (22)

t—At<t(j)<t
This definition might also give negative values. When applied to empirical data and Monte Carlo simula-
tions, this estimator behaves similarly to the Zhou estimator. Moreover, it is not possible to improve this
estimator along the line described in section 2.4.2. Because it is quite redundant with the Zhou definition,
we have not included this estimator in the analysis below.



3 Properties of the volatility estimators

3.1 The Monte Carlo testing set-up

As the actual volatility is unknown for empirical data, we use Monte Carlo simulations to assess the prop-
erties of the various volatility estimators. The simulations are done with a constant volatility random walk
or with a GARCH(1,1) model. In the simulations, the actual volatility at each time t is known, and this
“instantaneous” volatility can be integrated over an interval At, say of 1 day, in order to get the “true” inte-
grated volatility Oinegrated (SOMe authors called this the realized volatility). Then, the various estimators can
be benchmarked against this volatility.

In more details, the set-up for the Monte Carlo simulations is as follows. The unobserved “true” price X( j)
follows a process in tick time

= X3
—~

) = X(G-1+70) (23)
(D = oar(t) et).

The residuals £(t) are i.i.d. with E[g(t)] = 0 and E[€?(t)] = 1. For all the simulations, the residuals are drawn
from a Student-t distribution with 6 degrees of freedom. This ensures that the distribution of returns has a
high degree of kurtosis, and this numerical value is consistent with observed empirical high frequency data.
The underlying volatility process is taken to be either

e constant with og = 1,

e witha GARCHY(1,1) dynamic with parameters corresponding to a mean annualized volatility E[ogﬁ] =
1 and a characteristic time of the decay of the autocorrelation function of the volatility of T¢or = 10
days.

The time interval ot between the simulated prices is taken i.i.d. randomly from an exponential distribution
(Poisson process). The “true” integrated volatility is computed with

0-i2ntegrated [At] (t) = Z ngf ( J) (24)
t—At<t(j)<t

with At = 1day.

The observed logarithmic prices x(j) =X(j) 4+ u(]) are obtained by adding the random incoherent term to the
“trug” price. We have taken a Gaussian distribution for u, with a variance n? related to the mean annualized
volatility o2 of the “true” price process by

N2 =72 Eflt] 52 (25)

with E[8t] the mean time interval between the quotes. The factor z? fixes the incoherent noise level. All
the simulations are done with z2 = 2, in agreement with the empirical value found using Reuters data
[Corsi et al., 2001], namely the incoherent term dominates the random walk component at the tick level
by a factor of two.

The observed logarithmic prices x(j) are used as the input for the various volatility estimators. Hence,
the inaccuracy of the estimators originates from the computation of the return with F = og € and from
the addition of the incoherent component to the prices x = X+ u. In the studies below, we have included
the following estimators: the daily squared return |r[1d]|?, RiskMetric oéisk,vletric, the (unfiltered) regular
time series volatility o&rg[1d,30'] with a return time interval of 30 minutes, the filtered regular time series



volatility 04;5[1d,5'] with a return time interval of 5 minutes, the Zhou volatility 62,,,,[1d], the microscopic
volatility 0§h0u+LC[1d,At’] with the incoherent term measured on At’ = 10 days, the filtered Zhou volatility
(i.e. the incoherent filter followed by a Zhou estimator), and the filtered quadratic variations.

We define the estimation error as
Ao® = 0® - O-i2ntegrateda (26)

where @2 is one of the estimators under consideration. Furthermore, we also estimate the pdf (probabil-
ity density function) of the various estimators. The correlation between o2 and olzmegrated, and between

((cr2)+)1/2 and Ojntegrated 1S cOMputed. The Monte Carlo simulations are computed for an equivalent length
of 42 years (with 260 business days per year).

3.2 Testing for efficiency

The interpretation of the simulations is fairly involved because several competing factors influence the es-
timation error of the different estimators. First, increasing the aggregation factor k used for measuring the
return ry k-ticks apart is an efficient way to reduce the incoherent term. This is based on the different aggre-
gation properties of a random walk and the incoherent term, and taking larger k makes smaller the incoherent
component. Second, when increasing k, the dependency between ri(j) and re(j+ 1) increases, and therefore
the effective number of independent terms in the sum diminishes. These two competing factors lead to an
optimal value for k. Third, the incoherent filter applied to the price series is a powerful way to reduce the
incoherent noise. As the variance of 3 rZ is directly influenced by the level of the incoherent component,
reducing the incoherent component reduces the variance of the Zhou estimator. Fourth, the filter is correctly
specified only for a random walk with constant volatility, which is not the case for GARCH processes or for
empirical data. Therefore, even after filtering, correcting again for the incoherent component in the volatil-
ity estimator helps in reducing the estimation error. All these four competing factors influence together the
results of the simulations, making the overall picture quite complex.

The standard deviation for the estimation error is given in table 1 for the three simulations below. The
first simulation is done with a constant volatility 62 = 1 and with random time intervals with E[&t] = 5
minutes. Because the volatility is constant, the realized volatility depends only on the number of ticks in a
day. The average number of ticks is large (288), and therefore the integrated volatility is essentially constant
(its standard deviation is 0.03) With this process, the pdf for the estimation error is essentially a translation
of the pdf for the various estimators. The estimated probability densities for a selection of the estimators
are given in Fig. 1 (the pdf is estimated with an histogram, using a linear interpolation for computing the
weights in the two adjacent bins). The very poor properties of the squared return |r[1d]|? as a daily volatility
estimator are obvious from this figure. Therefore, it is very difficult for example to assess the quality of daily
volatility forecasts by GARCH(1,1) using only daily data [Andersen and Bollerslev, 1998]. The RiskMetric
estimator is good, but as there is no dynamic on the volatility, its properties are not realistic compared
to the behavior of the RiskMetric estimator found on empirical data. For the (unfiltered) RTS estimator
based on 30’ returns, the bias is obvious when looking at the figure. This is because the incoherent noise is
added at the 5’ time horizon, and there is not much aggregation between 5 and 30’ to lower the incoherent
contribution. The filtered RTS estimator based on 5’ returns is a very good estimator. On the other hand,
the Zhou a2, and Zhou with long covariance 02, ¢ estimator with k = 4 have a large variance. For
k = 1, the variance is even larger, and the probability to obtain negative values cannot be neglected. As
already noted by [Zhou, 1996], increasing k helps in reducing the variance (see table 1), and therefore the
probability to have negative volatility. But clearly, the best estimators are the filtered Zhou volatility and the
quadratic variations, both with k = 1.

The second simulation is performed with a GARCH(1,1) dynamic for the volatility, and with random time
intervals between ticks, with E[3t] = 5’. The estimated pdf for the estimation error is given in Fig. 2. The
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Student RW GARCH(L]) GARCH(L])

E[3t] =5 E[8t] =5 E[&t] = 30"
|r[1d]|? 1.49 1.63 1.42
RiskMetric 0.263 0.675 0.308
02rg[1d,30] 0.370 0.391 0.224
Filter + 02.5[1d,5'] 0.145 0.298 0.095
021ul1d, k =1] 0.443 0.454 0.140
0%poul1d, k =2] 0.322 0.353 0.103
021,[1d,k = 4] 0.324 0.380 0.105
0%1oul1d,k = 8] 0.411 0.496 0.133
0210u[1d, k = 16] 0.561 0.669 0.180
02pousLcl1d,10d, k = 1] 0.477 0.479 0.152
02pousLcl1d,10d,k = 2] 0.300 0.400 0.096
02pousLcl1d,10d, k = 4] 0.241 0.276 0.078
o%houﬂc[ld, 10d,k = 8] 0.259 0.329 0.084
0%pousLcl1d,10d, k = 16] 0.332 0.401 0.107
Filter + 05,,,[1d,k = 1] 0.169 0.230 0.073
Filter + 02,,,[1d,k = 2] 0.216 0.252 0.070
Filter + 02;,,,[1d,k = 4] 0.290 0.347 0.094
Filter + 02,,,[1d,k = 8] 0.400 0.484 0.130
Filter + 02,,,[1d,k = 16] 0.558 0.665 0.178
Filter + 03 [1d,k = 1] 0.121 0.362 0.121
Filter + o5, [1d,k = 2] 0.133 0.274 0.093
Filter + o5, [1d,k = 4] 0.161 0.221 0.070
Filter + o5, [1d,k = 8] 0.212 0.251 0.071
Filter + 03, [1d,k = 16] 0.288 0.339 0.093

Table 1: Standard deviation of the estimation error associated with the various estimators. The mean of the estimation
error is always negligible, except for 02,¢[1d,30'] with values 0.62, 0.62, and 0.044.
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Figure 1: Estimated probability density function (pdf) of the measurement error for a Student-t random walk (constant
volatility). The time interval between the prices is random with E[0t] =5'.

major difference with the previous simulation is the larger variance for all the high frequency estimators.
This is due to the fact that we are computing the estimation error (and not the relative estimation error),
and the errors can be larger for large integrated volatilities. Beside, in this particular case, RiskMetric is
quite optimal for an estimator using daily data. This good property of RiskMetric originates in the near
coincidence of the RiskMetric parameter (~ 16 days) and the decay of the autocorrelation function of
volatility for the simulated prices (10 day). Moreover, both the memory of the simulated data and the
evaluation kernel of RiskMetric decay exponentially. Both coincidences make the RiskMetric estimator
nearly optimal in comparison to other simulation setups, like for example with processes including long
memory of the volatility. The best estimators are again either filter + Zhou or filter + quadratic variations.
Notice that when the volatility is not constant, the filter as given in [Corsi et al., 2001] is partly misspecified
as it assumes a volatility per tick changing at time scales longer than the filter time horizon (in the present
case, 10 days). Therefore, part of the incoherent noise remains in the tick-by-tick data. This is why Zhou
with k = 1 shows better properties than the quadratic variations with k = 1. Finally, at this tick frequency,
the standard deviation of the best high frequency estimator is three times smaller than RiskMetric.

The third simulation is performed with a GARCH(1,1) dynamic for the volatility, and with random time
intervals between ticks with E[dt] = 30”, namely a 10 fold increase in the tick frequency. The estimated pdf
for the estimation error is given in Fig. 3. The unfiltered RTS volatility shows no visual bias on the graph,
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Figure 2: Estimated probability density function (pdf) of the estimation error for a GARCH(1,1) process. The time
interval between the prices is random with E[t] = 5.

and its computed mean estimation error is 0.016. This is due to the aggregation between 30 seconds and 30
minutes that is enough to scale down the incoherent noise. This small bias can be safely neglected. At this
tick rate, all the high frequency volatility estimators are clearly better than RiskMetric, with a reduction of
the standard deviation up to a factor of 4. The relative performances of the high frequency estimators are
similar to the one obtained at 5’, with the best estimator being filter + Zhou and filter + quadratic variations.

The correlation between 0 and Of ey eq 1S given in table 2 for both GARCH(1,1) simulations above (the
realized volatility is almost constant for the Student RW, and the correlation is not well defined). For
example, the correlation with RiskMetric is of the order of 35% (50% for the 5 simulation), whereas high
frequency definitions have correlations in the range 90% to 95%. Table 3 gives the probability to obtain
a negative value for the volatility estimators that do not enforce positivity. These probabilities can also be
estimated for empirical data, and we have added the values corresponding to USD/CHF measured over 10
years (from 1.1.1991 to 1.1.2001) for daily and hourly volatilities. For the daily estimate, the volatility
is measured with 24 hours of data (i.e. in physical time and not in a business time scale removing the
week-end). The values are taken every 8 hours, removing the week-ends (from Friday 21:30 to Sunday
21:30 GMT), but keeping holidays. For the hourly estimate, the measure is taken every hour, also removing
week-ends. The large difference between USD/CHF and GARCH(1,1) with E[3t] = 30" indicates that the
simulated process does not reproduce well the empirical data at this frequency. At least the seasonality is
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GARCH(1,1) | GARCH(L,1)
E[3] =5 | E[&t=30"
P R2 p R2

[r[1d]}? 43| 019 |17 | 003
RiskMetric 52 0.28 35 0.11
02rg[1d,30] 88| 078 |73| 053
0&r5[1d,5'] 92| 085 |92| 085
0%pu[1d, k = 1] 86| 074 [87] 0.76
02;0,[1d,k = 2] 91| 083 |92| 0.85
02poul1d, k = 4] 89| 080 |92| 085
020,10,k = 8] 82| 068 |88 | 0.77
02poul1d, k = 16] 75| 058 |81| 065

O%housLclld,10d,k=1] | 85| 072 [85] 0.73
0%rousLcl1d,10d,k=2] |93 | 0.86 |93 | 0.87
0% ousLclld,10d,k=4] | 94 | 088 |95| 0091
0%rousLcl1d,10d,k=8] |91 | 0.83 |95 | 0.89
0% ousLclld,10d,k =16] | 88 | 0.77 |92 | 0.84
Filter + 05, [1d,k=1] [ 95| 090 |95| 091
Filter + 02,,[1d,k=2] | 95| 090 |96 | 0.92
Filter + 0%,,[1d,k=4] |91 | 082 |93 | 0.87
Filter + 02,,[1d,k=8] |83 | 069 |88 | 0.78
Filter + 0%,,,[1d,k=16] | 75| 056 |81 | 0.65
Filter + 05, [1d,k = 1] 88| 077 |86 | 094
Filter + o5 [1d,k = 2] 93| 087 |92| 085
Filter + o5, [1d,k = 4] 95| 091 |96 | 0091
Filter + a5, [1d,k = 8] 94| 089 |95| 091
Filter + 0%,/[1d,k=16] |90 | 082 |93 | 0.86

Table 2: Linear correlation p (in %) and goodness of fit R2 between 02 and Gﬁ]tegrated.
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Figure 3: Estimated probability density function (pdf) of the estimation error for a GARCH(1,1) process. The time
interval between the prices is random with E[dt] = 30”.

missing, but the dynamic of GARCH(1,1) is also not very close to the known empirical properties. The
most interesting result regarding the USD/CHF data is the very large probability for negative values for
02,0usLc @t small k. Although this estimator is good on Monte Carlo simulations, this is a very strong
argument against using this estimator in practice. On the other hand, the estimator Filter + oghw[m, k=1]
has a sufficiently low probability to be acceptable (1 point for 7818 values for daily volatility, occurring on
a Sunday at 00:00). The hourly volatilities estimated from empirical data produce more negative values, as
expected from the smaller number of ticks available for the computation. Yet, most of the negative values
occur during the opening of the Asiatic market (i.e. between 23:00 and 06:00 GMT), where the volatility
and tick rate are low (~ 10 tick/hour).

3.3 Simulation for the “week horribilis”

The major salient properties of empirical data are the strong daily and weekly seasonalities induced by the
cycle of human activities. In order to test the robustness of the various estimators with respect to rapid
changes of the volatility pattern, we simulated an artificial “week horribilis” which includes strong patterns
in the volatility and the tick rate. The simulations are done with a simple Student random walk, with a
volatility of 0% = 1. The time intervals between ticks are random, with a reference expected tick rate of 12
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Student RW | GARCH(I,I)] GARCH(I,I)] USD/CHF | USD/CHF

E[ot] =5 E[dt] =5 E[ot] = 30" | Daily vol Hourly vol
0%noulk =1] 1.3 6.0 0.0 3.0 13.8
02noulk = 2] 0.03 1.3 0.0 0.5 6.9
0%poulk = 4] 0.0 0.17 0.0 0.7 5.7
02k = 8] 0.01 0.04 0.0 1.0 7.8
0%k = 16] 0.3 0.4 0.0 1.2 11.2
0%nousLc10d, k =1] 1.3 7.3 0.0 29.3 40.6
02wt cl10d,k = 2] 0.01 15 0.0 11.5 28.9
0%pousLcl10d, k = 4] 0.0 0.15 0.0 3.4 10.0
02wt cl10d,k = 8] 0.0 0.03 0.0 1.1 11.1
0% c[10d, k = 16] 0.0 0.1 0.0 0.2 5.0
Filter + 02, [k = 1] 0.0 0.0 0.0 0.01 0.2
Filter + 025, [k = 2] 0.0 0.0 0.0 0.08 0.5
Filter + 03, [k = 4] 0.0 0.0 0.0 0.3 2.5
Filter + 02, [k = 8] 0.0 0.0 0.0 0.7 6.5
Filter + 03,k = 16] 0.2 0.3 0.0 1.2 10.9

Table 3: Probability of negative values for 02, in %. The first three columns are for daily volatilities, the last one for
hourly volatility.

tick/hour (E[8t] = 5'). An incoherent term is added to the prices with an intensity of z2 = 2. The volatilities
are measured hourly, and therefore have a very small number of ticks to work with. The set up for this test
week is given in the upper graph of Fig. 4, and is as follows: On day one the volatility and the tick rate
are simply constant. Day two simulates a gap, hamely the underlying process runs regularly with constant
volatility while no data is provided to the volatility estimators. As a result, there are potentially large jumps
in the price at the opening of day three. Day three tests for a large change in volatility, while the tick rate is
constant. To achieve this pattern, the volatility per tick needs to be increased accordingly. Day four simulates
a “dead market”, namely no tick is provided and the market reopens at the closing price. We introduce this
notion in order to differentiate from a night or a week-end. Particularly for stocks and stock indexes, there
is new arrivals while the market is closed, leading to an opening price that can be quite different from the
previous closing price. Therefore, a real night or a week-end is a combination of a dead market and a gap
and is simulated in day six. Day five shows a constant volatility while the tick rate is increased by a factor
four. Within this day, the volatility per tick is inversely proportional to the tick rate in order to obtain a
constant volatility. Notice that during day three and five, the incoherent filter is misspecified as it assumes
a constant noise per volatility. Day six tests for a real week-end, with a gradual reopening of the market,
including a slowly increasing tick rate. Finally, day seven shows a simultaneous pattern for the realized
volatility and the tick rate. Given the set of patterns as well as the low tick rate and the high incoherent
noise, the parameters are quite extreme and provide for a harsh test of the estimators: therefore the name
“week horribilis”.

The results are displayed in the lower graph of Fig. 4. Overall, the various volatility estimators reproduce
well the realized volatility, particularly taking into account the low tick rate and high incoherent noise.
On the days three and five, the “filter + quadratic variation” is not able to measure correctly the realized
volatility. This is due to the misspecification of the incoherent filter which is not corrected by this simple
estimator. On the other hand, the estimator “filter + Zhou” with k = 4 measures correctly the realized
volatility, as the Zhou estimator will correct for the misspecification of the filter. The correction is not
perfect as a misspecified incoherent filter induces an exponential lagged correlation [Corsi et al., 2001],
whereas only the first lag (at the given k value) is taken into account in the Zhou estimator. The estimator
“filter + Zhou” with k = 1 gives similar results as “filter + quadratic variation” at k = 4. Nevertheless, given
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the quite extreme set-up of the week horribilis, the “filter + Zhou” provides very accurate values.

The data gap on day two deserves a special discussion. The question is whether a “real time” or “historical”
behavior is desired. In real time, the value at a given time point needs to be given immediately at this time
point (causal estimator), whereas for a historical computation, the values of subsequent ticks can be used
(non causal estimator). Therefore, by only using past information, it is not possible to make the difference
without extraneous informations between a normal market closure (e.g. a week-end), a non regular market
closure (e.g. a Holiday) or a gap (e.g. a technical failure). If a causal estimator, e.g., returns a zero value
inside a gap (our choice), then at the end of a gap a large volatility spike appears due to the large price
jumps. This behavior is imposed by the causality, and all estimators will suffer similarly. On the other hand,
if a historical (non causal) estimator can be used, subsequent values provide a hint that a gap went by. Such
an estimator is given with the label “Zhou+BC”, and has been introduced in section 2.4.5. Fig. 4 shows that
the gap correction is working perfectly on day two. Moreover, the “week-end” in day six, composed of a
dead market and a gap, shows exactly the same behavior, although to a smaller extend. This emphasizes
the importance of a correct behavior in a gap, as night and week-end are recurring events. At this point, the
choice of real time or historical estimators is imposed by other external constraints. The important point is
that the gap correction is working perfectly, provided that a historical estimator can be used.

In order to check the dependency with respect to the tick rate, the same set-up has been used, except for
the higher tick frequency E[8t] = 30" instead of E[0t] = 5'. Essentially the same results are obtained, which
confirm the above analysis.

3.4 A first summary

The main results from these simulations are:

e The best high-frequency estimators clearly outperform the estimators using only daily data.
e 02, isnotagood estimator as its variance is too large (for all k).

e 02, clk = 4] is an estimator with a small variance, but the probability to obtain negative values
with empirical data is far too large.

e Filter + 02,,[1d,k = 1] (or k = 2) is an efficient estimator, with a small enough probability to obtain
negative values when using empirical data. Moreover, the Zhou estimator corrects (at the first lag) for
the misspecification of the incoherent filter.

o Filter + oév[ld, k = 4] is efficient and positive. On the down side, this estimator does not correct for
the misspecification of the incoherent filter, and the optimal value for k may change with the process
used for the simulations (and is unknown for empirical data).
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the simulation are given in the text.
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4 \olatility estimates on empirical data

The relevance of the Monte Carlo simulations presented in the last section obviously depends on how good
the model used to simulate the price process duplicates the properties of empirical data. Yet, a direct com-
parison is impossible precisely because the volatility of the empirical data is an unknown quantity. As a
direct check of the model is not possible, we have to verify that the assumptions used in the price process,
as defined in section 2.1, agree with the corresponding properties of empirical data.

An assumption used to model the incoherent term is that its intensity, as measured by n, is independent
of the current level of volatility as measured by o. The rational for this hypothesis is that the incoherence
is bounded by the spread, and therefore n must be a fraction of the spread. On the other hand, one can
expect that the incoherence, as it measures the level of disagreement between the market participants, must
be related to the current level of volatility.

A check for the constant n hypothesis is given by an intra week conditional average. The idea is to use the
strong daily pattern to measure the average variance, covariance and volatility as a function of the time in
the week. More precisely, we compute the following quantities

1
o r2 J (27)
per tic (t) n[At](t) t—At<t(j)<t e
Std.DeV.pertick = 10000\/ E[Varpertick (t) | '] -

where n is the number of ticks in the interval At (Eq. 16). The expectation is taken conditional to the time
in the week t' =t mod 1week. The factor 10000 expresses the standard deviation in basis points, a natural
unit for “per tick” quantities. We proceed similarly for the covariance per tick and the volatility per tick
(according to the Zhou definition). Essentially, the covariance per tick gives an estimate for n2 and the
volatility per tick an estimate for o2. The results are displayed in Fig. 5, using 5 years (1996 to 2000) of
the FX rate USD/CHF. The number of ticks shows a very strong seasonality, with a factor 30 between the
peak (~ 300 tick/hour during European and American market opening), and the trough ( ~ 10 tick/hour
during the Asiatic opening). The low number of ticks during the nights induces poor statistics during these
periods, and is visible in the larger fluctuations in the other curves. The volatility per tick, a measure of
o, has an inverse behavior. This is due to the lower coverage of the Asiatic market by Reuters, leading to
a higher price change “per Reuters tick”. The ratio between crest and trough is ~ 3 for the volatility per
tick. As volatility is the product of the volatility per tick with the number of ticks, this leads to the usual
intra-week volatility pattern, with a factor of ~ 10 for the volatility between European/American and Asiatic
markets. The seasonality of ¢ is not included in the simplest model for the price process, as given in Eqg. 2.
It is trivial to include a volatility seasonality, and this issue has been already explored in the Monte Carlo
simulations with the “week horribilis”. This shows the importance of a volatility estimator which is robust
against changes in a. Moreover, the incoherent filter is not correctly specified (as a constant volatility and
correlation are assumed). This is an argument for not using “filter + quadratic variation”, but instead “filter +
Zhou” as this will correct (partly) for the misspecification of the incoherent filter. Beside, as the correlation
is the ratio of the covariance with the variance, the seasonality of o induces a seasonality in the correlation
(see the discussion at the end of section 2.4.2).

The covariance per tick, a measure of n, is essentially constant, with a value of 2 basis points per tick. This
constant n justifies the model (Eg. 2), in line with the argument that the incoherent term is bounded by the
spread (~ 10 basis point on Reuters). During the opening of the European and American markets, where the
statistics are better, one can also see a smaller modulation proportional to the volatility (or to the tick rate).
The amplitude of this modulation is of the order of 0.1 basis points, indicating that there is a small influence
on the incoherence induced by the current level of volatility. Yet, this modulation is an order of magnitude
smaller, enough to be neglected in first approximation. A visual study of the scatter plot for the covariance
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Figure 5: The average hourly volatility per tick conditional to the time in the week, in basis points, for USD/CHF.
The averages are computed from 1.1.1996 to 1.1.2001, and the week-ends are omitted from the graph. The upper
continuous curve gives the number of ticks (right scale), the dashed curve the standard deviation per tick, the dotted
curve the square root of minus the covariance per tick, and the lower continuous curve the volatility per tick (left scale).
All the quantities are measured on an hourly basis At = 1 hour, with one tick apart returns rq (i.e. k= 1).

per tick versus the volatility per tick (or versus the volatility, or versus the number of ticks) for hourly
guantities, conditional to a given time in the day (to remove the seasonality), confirms the independence of
the incoherent term with respect to the other variables. During the high tick rate period, the volatility per
tick is of the order of 1 basis point whereas the incoherent term is of the order of 2 basis points. This shows
again that the incoherent contribution dominates the usual random walk component at the tick time scale.

Until this point, we have been concerned with definitions and statistics related to the various estimators. As
we have a good idea of their respective merits and weaknesses, we can apply them to actual data. Fig. 6
shows the time evolution of the volatility in May 2001 as measured by some selected volatility estimators.
In order not to clutter the graph, only three volatility estimators have been drawn, but essentially all the high
frequency volatility definitions give consistent values. Beside, the slow dynamic of RiskMetric is very clear
from this graph.

5 Conclusion

Although it is common to talk about the volatility, there is no single universally accepted definition of
volatility. Instead, as we have shown in section 2, several different estimators can be used to measure
the fluctuations of the prices. Simple statistical considerations indicate that we should use tick-by-tick
definitions, like the Zhou volatility estimator. Moreover, these definitions do not need an auxiliary regular
time series at an arbitrary time scale ot. The tick-by-tick volatility estimators correspond to the best possible
approximation of the limit & — 0, given the available information. Indeed, as investigated with Monte Carlo
simulations, the advantage of tick-by-tick definitions is clear. As an order of magnitude, the variance of the
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Figure 6: The daily volatility time evolution in May 2001. The two high frequency volatility estimators are filter +
((020ulk = 1])7)¥? (dotted curve) and filter + ((02,,,,[k = 4])*)Y/? (continuous line). The high frequency volatility
estimator uses a moving sample of 24 hours, 7 days a week. The plot makes apparent the strong seasonality due to
the week-end, but the daily seasonality is completely absorbed by the daily window.

estimation error is reduced by a factor 4 when comparing RiskMetric (daily data) with the estimator "filter
+ Zhou” (high frequency data).

Yet, it is crucial to discount for the incoherent term induced by the price formation. If not, the volatility is
largely overestimated, or biased, compared to measures at the daily time scale. The Monte Carlo simulations
indicate that the current best available estimator is “filter + Zhou”, namely to filter the prices with an incoher-
ent filter according to [Corsi et al., 2001], followed by a volatility estimator as given by Zhou [Zhou, 1996].
This combination has the advantage to have a small variance, a low probability to give negative values,
and to correct for the misspecification of the filter. Another good choice is "filter + QV” (filter + quadratic
variation). It is simple, is always positive, and its weakness with respect to the seasonalities are not essential
for computing daily volatility. These choices are certainly not the last word: better volatility estimates will
allow for a better characterization of the financial tick-by-tick processes. In turn, more refined models will
allow for more realistic Monte Carlo simulations and more stringent tests of volatility estimators.

All the volatility estimators investigated in this work are essentially quadratic estimators. Because of the
fat tail distribution of returns and of the possible outliers, the present estimators are quite fragile, and the
original market data must be carefully filtered before using such tick-by-tick estimators. On the other hand,
it is desirable to have more robust estimators. A first step in this direction could be to use formulae based on
the sum of absolute values for the returns, like o1 = S |r|. Yet, the construction of unbiased, efficient and
robust estimators is an open problem in the present setting (i.e. in the presence of an incoherent component).

In this work, we have investigated the high frequency volatility estimators of traded assets. To various
degrees, the incoherence in the price formation should manifest itself on each “traded” time series. The
case of stock indexes is different, as already analyzed in [Corsi et al., 2001], because they are computed
guantities. In particular, the lead-lag structure between different stocks induces a more complex lagged
correlation function for the indexes, and the simple EMA filter cannot be used. Although the extension of
volatility estimators to this case is fairly straight forward (in the Zhou definition, more lagged covariance
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terms can be included), the optimal choice of the volatility estimator is still an open problem. For example,
an estimator which takes into account the shape of the lagged correlation may give better results than a purely
non parametric estimator that includes all the lagged covariances up to some cut-off. Another interesting
direction is to revisit the “Epps” effect [Epps, 1979]. This effect denotes the decreasing correlation between
the returns r1[8t] and r[dt] of two different time series when the return time interval &t decreases. Obviously,
some time is needed for the market participants to build the appropriate correlation, but the incoherent price
formation on both time series should also contribute to the lower correlation at high frequency. It would be
interesting to compare the correlation between the raw time series, and between the time series filtered for
the incoherent component.

The implications of a better measure for the volatility are far reaching. In broad terms, a good tick-by-tick
volatility estimator enlarges our information set about a given time series. This will lead to better forecasts,
both because the information set in the past is better, and because the integrated volatility to be forecasted is
known accurately. In turn, this will lead to better risk management, portfolio optimization or option pricing.
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